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Fig. 1. We introduce automatic boundary sampling for discontinuities in di�erentiable shaders. Given a shader that renders a piecewise-continuous output, we
first transform it into a surrogate, piecewise-constant shader (shown on the le�). This transformation enables our method to sample jump discontinuities by
evaluating the shader along randomly selected line segments. We call this approach segment snapping; it removes the need for specialized boundary-sampling
routines, which are tedious to implement and o�en ill-defined. Our method unlocks a variety of new applications (shown on the right).

We present a novel method to di�erentiate integrals of discontinuous func-

tions, which are common in inverse graphics, computer vision, and machine

learning applications. Previous methods either require specialized routines

to sample the discontinuous boundaries of predetermined primitives, or

use reparameterization techniques that su�er from high variance. In con-

trast, our method handles general discontinuous functions, expressed as

shader programs, without requiring manually speci�ed boundary sampling
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routines. We achieve this through a program transformation that converts

discontinuous functions into piecewise constant ones, enabling e�cient

boundary sampling through a novel segment snapping technique, and accu-

rate derivatives at the boundary by simply comparing values on both sides

of the discontinuity. Our method handles both explicit boundaries (polygons,

ellipses, Bézier curves) and implicit ones (neural networks, noise-based func-

tions, swept surfaces). We demonstrate that our system supports a wide

range of applications, including painterly rendering, raster image �tting,

constructive solid geometry, swept surfaces, mosaicing, and ray marching.

CCS Concepts: • Computing methodologies→ Rendering; •Mathemat-

ics of computing→ Di�erential calculus.
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1 INTRODUCTION

A wide class of inverse problems in graphics, vision, and machine

learning can be solved by computing the derivative of integrals:

∇\ ∫Ω 5 (G, \)dG . Traditional automatic di�erentiation methods can

produce incorrect results when the integrand 5 is discontinuous,

since they ignore the Dirac delta distribution that arises from di�er-

entiating step discontinuities, which needs to be integrated. We call

this integral over Dirac delta a boundary integral since it integrates

over the boundary of the discontinuities. In this work, we propose a

new method for numerically estimating the derivative of integrals

that enables us to derive an automatic di�erentiation method that

is applicable to an extremely wide range of problems (Fig. 1).

The boundary integral requires a di�erent numerical estimator

than the original integral and can be challenging to evaluate. For

sampling, the Monte Carlo estimator needs to be aware of the deci-

sion boundaries. The di�erentiable rendering literature has exten-

sively studied Monte Carlo estimators for computing derivatives of

discontinuous functions under integral sign [Li et al. 2018, 2020; Ban-

garu et al. 2020; Loubet et al. 2019; Zhang et al. 2020]. However, these

estimators are specialized to particular rendering problems and are

not straightforward to generalize outside of the original problem

setting. Even handling programmable shaders with discontinuities

in existing di�erentiable renderers can be very challenging [Zhao

et al. 2020]. Recently, a class of di�erentiable programming lan-

guages emerged that generalizes these derivative estimators to a

broader class of problems [Bangaru et al. 2021; Michel et al. 2024;

Yang et al. 2022]. However, these languages are either still restricted

by the class of programs that can be di�erentiated, require extensive

user guidance on the sampling routines, or introduce non-negligible

approximations to the derivative computation.

Path 1

Path 2

Shader Transformation

We propose a general automatic di�erentia-

tion algorithm that “just works” with discontinu-

ities, as long as the decision boundary itself is dif-

ferentiable. We implement our algorithm inside

a standard shader programming language [Ban-

garu et al. 2023]. We focus on low-dimensional

integrals (2D or 3D). Our method is based on

two key components that go hand-in-hand. The �rst is an auto-

matic shader transformation (right inset) that turns a piecewise

continuous shader into a piecewise constant one.

Segment Snapping

The shader transformation enables our

second key component, segment snapping

(left inset), to perform automatic bound-

ary detection by randomly sampling line

segments in the integration domain, and

checking whether the two end points are in

the same region. Once we obtain the bound-

ary samples by a bisection search along the segments, we perform

kernel density estimation to compute the probability density of the

samples for Monte Carlo integration. Moreover, the appropriate

di�erence in function values on both sides can be computed simply

by comparing values on both sides of the branch in the shader pro-

gram. Our method is theoretically consistent, enjoys low variance,

and scales to complex decision boundaries with a large number of

conditions. Our program transformation fully happens at compile

(a) Standard AD (b) Blurring (c) WAS (d) A-Delta

A
re

a
 S

a
m

p
li

n
g

B
o
u

n
d

a
ry

 S
a
m

p
li

n
g

(e) Specialized sampling (f) TEG (g) Ours
= sample_bez()

Fig. 2. Taxonomy. Previous work in boundary derivative computation can
be classified into two approaches: boundary sampling and area sampling.
Boundary sampling methods achieve high accuracy with fewer samples
(red points) but are limited by their requirement for specialized sampling
routines. In contrast, area sampling methods o�er greater generality in the
functions they can di�erentiate, but require higher sampling rates to do so.
Our method eliminates the need for specialized routines while maintaining
the e�iciency of boundary sampling, making it applicable to a broader range
of discontinuous functions.

time. It preserves the original program structure, which facilitates

modularity [Michel et al. 2024] while maintaining e�ciency. The

generality of our method unlocks a wide range of applications that

were not possible before.

Our contributions are:

● Aprogram transformation that converts discontinuous shaders

into surrogate shaders with piecewise-constant outputs, en-

abling reliable detection of parametric discontinuities.

● A segment snapping approach that enables boundary sam-

pling for general discontinuous functions without requiring

specialized sampling routines.

● A practical implementation in SLANG.D that allows users

to write discontinuous shaders with automatic derivative

computation.

● Applications including non-photorealistic rendering, inverse

rendering with a diverse set of primitives, shadow art, and

inverse brush design. (Fig. 1).

2 RELATED WORK

We review the di�erent types of numerical methods in the context

of computing the derivative (with respect to \ ) of a discontinuous

function 5 (G, \) after integration (with G ) given by∇\ ∫Ω 5 (G, \)dG .
Fig. 2 shows an illustration of di�erent classes of methods. The

two main categories of methods are area sampling and boundary

sampling: area sampling methods place samples across the entire do-

main, and boundary sampling methods place samples at the decision

boundaries.

Automatic di�erentiation of non-di�erentiable functions. Auto-

matic di�erentiation [Griewank and Walther 2008] has been proven

to be correct almost everywhere if the function itself is di�erentiable

ACM Trans. Graph., Vol. 44, No. 6, Article 209. Publication date: December 2025.
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almost everywhere [Lee et al. 2020; Kakade and Lee 2018]. However,

these analyses do not consider distributional derivatives [de Amorim

and Lam 2022] that appear when di�erentiating an integral over

discontinuous functions—in such a case, automatic di�erentiation

can lead to incorrect results even when the integral is di�erentiable

everywhere [Bangaru et al. 2021; Lew et al. 2023; Michel et al. 2024].

Intuitively, this is because the conditions inside if statements are

ignored in standard automatic di�erentiation, and these conditions

are required to reason about how the decision boundary moves.

Arya et al. [2022] address di�erentiation of the expectation of dis-

crete randomness using score estimators [Mohamed et al. 2020]

with correlated sampling to signi�cantly reduce variance, but this

method has limited application to reverse-mode automatic di�er-

entiation. Suh et al. [2022] discussed the consequences of ignoring

discontinuities in control applications.

Blurring the discontinuities. A commonly used method to remove

discontinuities in programs is to transform them into smooth grad-

ual changes (Fig. 2b). This has been used to make, e.g., sorting,

di�erentiable [Qin et al. 2010; Berthet et al. 2020]. A few di�er-

entiable rasterizers [de La Gorce et al. 2011; Liu et al. 2019; Laine

et al. 2020] also applied this strategy. For programs, this can be

formulated as a convolution of a discontinuous program over a

smooth function [Chaudhuri and Solar-Lezama 2010; Kreikemeyer

and Andel�nger 2023]. Furthermore, there is a class of derivative-

free optimization methods that blur the discontinuities in parameter

space (\ ) instead of over the integration domain (G ), also e�ectively

removing the discontinuities [Staines and Barber 2012; Rechenberg

and Eigen 1973; Le Lidec et al. 2021; Fischer and Ritschel 2023; Deliot

et al. 2024].

Unfortunately, these methods risk biasing the gradients by chang-

ing the function being di�erentiated. Choosing the blurring strength

automatically is challenging: strong blurring removes details, and

weak blurring leads to sparse derivatives. Derivative-free meth-

ods further face scalability issues when the parameter space is

high-dimensional. Our method does not su�er from these issues by

avoiding blurring altogether, directly sampling the boundary, and

being used in combination with reverse mode automatic di�erentia-

tion [Griewank and Walther 2008].

Boundary sampling. The boundary sampling methods (Fig. 2e)

place samples explicitly on the decision boundaries, directly solv-

ing the boundary integral [Li et al. 2018; Lee et al. 2018]. Existing

boundary sampling methods all require a way to parameterize and

sample on the boundary. For piecewise linear discontinuities, this

can be easily automated [Lee et al. 2018; Bangaru et al. 2021] (Fig. 2f)

However, when the decision boundaries become more complex, it is

often required to design a problem-speci�c parameterization of the

decision boundary. For example, Li et al. [2020] designed specialized

solvers for di�erentiable vector graphics rendering, whereas Zhang

et al. [2020] specialize for path-space di�erentiable rendering. Spe-

cialized adaptive importance sampling strategies [Yan et al. 2022;

Zhang et al. 2023] or Markov-chain Monte Carlo mutation [Xu et al.

2024] have been proposed too. Our method belongs to the boundary

sampling class, but does not require specialized sampling routines

tailored to a speci�c type of boundary. This enables applications

(c) A�er threshold: g > 0(b) Scalar condition: g(a) Discontinuous function:

f = g > 0 ? m : n

(d) true clause: m (e) false clause: n (f) Boundary derivative: J

Fig. 3. Discontinuous function and its boundary derivative. The discontinu-
ous function 5 (a) is constructed using a branching operator that selects
between two functions<,= (d,e) based on the sign of a scalar condition
6 (b,c). Formally, 5 is defined as 5 (G,\) =<(G,\) when 6(G,\) > 0 and
5 (G,\) = =(G,\) when 6(G,\) ≤ 0, exhibiting a jump discontinuity at the
boundary defined by the zero level set of 6. When 6(G,\) is di�erentiable
in \ , perturbation in \ induces a change in 5 ’s boundaries (f), pushing them
inwards (red) or outwards (blue). The associated derivative is the boundary
derivative integral m\ �1 Eq. (3).

that were di�cult before, e.g., di�erentiating decision boundaries

encoded by an implicit coordinate neural network.

Area sampling. Since sampling the boundary can be di�cult, some

recent works [Loubet et al. 2019; Bangaru et al. 2020, 2022; Vicini

et al. 2022; Zeltner et al. 2021; Xu et al. 2023] instead convert the

boundary integral back to its original domain by constructing an

appropriate velocity �eld and applying the divergence theorem, or

equivalently, applying a reparameterization of the area integral to re-

move discontinuities (Fig. 2c). The integral in its original domain can

then be estimatedwithout any boundary sampling. Unfortunately, as

we show in the results, the commonly used harmonic-interpolation-

based velocity �elds often su�er from high (and sometimes in�nite)

variance. A-X [Yang et al. 2022], on the other hand, derives an ap-

proximated area sampling solution by sampling on a grid and using

neighboring information to detect boundaries (Fig. 2d). Unfortu-

nately, when the grid sampling frequency is lower than the discon-

tinuities’ frequency, their approximation often leads to signi�cant

bias in the gradient. Our method is boundary sampling based, has

low variance, and is theoretically consistent, and as such, it does

not su�er from these issues.

3 MOTIVATION AND BACKGROUND

We are interested in applications that involve parametric integrals

�(\) with discontinuous integrands, 5 (G, \) ∶ Ω × R: → R3 :

�(\) = ∫
Ω

5 (G ;\)dG . (1)

ACM Trans. Graph., Vol. 44, No. 6, Article 209. Publication date: December 2025.
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(a) Piecewise-continuous
function

(b) Piecewise-constant
function

(c) Segment snapping (d) Branch index
detection

(e) Probability density
estimation

(f) Two-sided integrand
evaluation

(i) Input (ii) Preprocessing (iii) Derivative Computation

(g) Boundary derivative
estimation

Fig. 4. Overview. Our method automatically samples a discontinuous function’s boundary to estimate the boundary derivative integral, Eq. (3). Starting with a
piecewise-continuous function (a) whose program source code is provided as input, we perform a function transformation to remove its continuous variation
and turn it into a piecewise-constant function (b) in a preprocessing step. We use this function to sample points on the boundary by snapping line segments on
to it (c). Next, we map the boundary samples to their branching operator in code (d), estimate the density of the points on the boundary (e), and evaluate the
integrand on both sides of the boundary (f). Finally, we put all these together and estimate the boundary derivative integral in a single reverse-mode pass (g).

We assume the integration domain Ω to be in a low-dimensional

Euclidean space, i.e., Ω ⊂ R{1,2,3}. The parameter set \ ∈ R: is a

vector of arbitrarily large dimension : . Given a set of measurements

(samples of the integrand) for � (e.g., the pixel integral in Fig. 3a), we

wish to recover an optimal set of parameters \ (e.g., the positions

of the enveloped disks). By the Reynolds transport theorem [1903],

the gradient ∇\ � is a sum of two terms:

∇\ � = ∫
Ω

∇\ 5 (G ;\)dG + m\ �1 . (2)

The �rst integral, i.e., interior term, is computed using standard

autodiff. The second term is a boundary integral that is evaluated

over the discontinuities mΩ

m\ �1 = ∫
mΩ

�(G, \)dG = ∫
mΩ
(5 (G+, \) − 5 (G−, \)) m\G⊥ dG . (3)

Estimating the integrand, or boundary derivative

�(G, \), involves three key steps: (i) drawing sam-

ples on the discontinuous boundary mΩ; (ii) e�-

ciently computing the normal component of the

boundary velocity m\G⊥, for all components of \ ;

and (iii) evaluating the integrand di�erence at the

boundary, 5 (G+) − 5 (G−), where the points G± = limn→0+ G ± n=̂

are on either side of the boundary with unit normal =̂.

The main challenge is to formulate an explicit and well-de�ned

routine to draw samples on the boundary mΩ. We propose a method

to address this for a large class of functions, described next.

4 METHOD

We introduce an automatic boundary sampling method to estimate

the boundary derivative integral in Eq. (3). Our method assumes

access to the full program source code that de�nes a discontinuous

function 5 using branching operators (i.e., if-else conditionals).

Figure 3 illustrates how this simple code structure can be used to

identify discontinuities. Our method rests on two key ideas: (i) trans-

form piecewise-continuous functions (Fig. 4-a) into surrogate func-

tions (Fig. 4-b) with piecewise-constant output (§4.2), and (ii) snap

randomly sampled line segments onto the discontinuities using a bi-

section method to detect the boundary (Fig. 4-c, §4.3). We associate

each boundary sample to the corresponding branching operator

(Fig. 4-d, §4.4). Then, we estimate the boundary sampling density

(Fig. 4-e, §4.5), evaluate the integrand on the boundary (Fig. 4-f,

§4.6), and estimate the boundary velocity (Fig. 4-g) to compute the

boundary derivative integral (§4.7).

4.1 Discontinuous integrands and scope

We require that 5 be represented as a directed acyclic graph (DAG)

� = (+ , �), with discontinuities expressed as if-else constructs,

which is a mild requirement that subsumes most practical shaders,

as visualized in Fig. 5b. Our method uses static analysis to identify all

unique branching operations. The evaluation point and parameters

(G, \) act as the source nodes in the graph. The interior nodes can

be of one of the following two types: di�erentiable operations in a

predetermined set D, such as +, ∗, sin, exp, etc.; or discontinuity-

inducing branching operators:

B(G, \) =
⎧⎪⎪⎨⎪⎪⎩
ℎ+(G, \) if 6(G, \) > 0
ℎ−(G, \) otherwise.

(4)

B selects among its two successor nodes ℎ± based on the value of

its scalar predecessor 6, called the boundary function (the discon-

tinuity is at 6(G, \) = 0). B is equivalent to an if-else statement.

To compute the boundary velocity m\G⊥, we require 6(G, \) to be

di�erentiable almost everywhere1, i.e., all nodes in 6’s subgraph

are di�erentiable, and that ∣∣mG6∣∣ > 0. Equivalently, 6’s subgraph

includes no type-B nodes. As 6 is continuous, its zero-level set mΩ

forms a closed curve in 2D (or a closed surface in 3D), which we will

use to detect discontinuities (§4.3). There are no such restrictions

on ℎ±, which allows us to nest B operators (Fig. 5).

Let B8 and 68 be the 8-th B operator and branch function. The set

of discontinuous boundaries mΩ is the union of all locations G such

that 68(G, \) = 0 and B8 is executed:

mΩ = {G ∣ ∨∣B∣8=1 68(G, \) = 0 ∧ B8 is executed} . (5)

4.2 Piecewise-constant surrogate for boundary detection

The fundamental challenge in detecting discontinuities is that changes

in function values can arise from either continuous variations or

discontinuous boundaries. This ambiguity makes it impossible to re-

liably detect discontinuities by examining only the function values.

Our solution is to derive a piecewise-constant surrogate function

5pc that is a graph-coloring transform of 5 (Fig. 4-b). It preserves the

16 is allowed to be discontinuous on a set of measure zero, as we discuss in §5

ACM Trans. Graph., Vol. 44, No. 6, Article 209. Publication date: December 2025.
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(a) original function’s output (b) function depicted
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if(           )
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Fig. 5. Piecewise-constant transformation. We transform a piecewise-continuous function (a), represented as a DAG (b), into a piecewise-constant function (e)
through a source-code transformation (c,d) that tracks the result of all branching decisions (if conditions) as the function is evaluated in a ternary vector
(with values ×, 0, 1 corresponding to true branch, false branch and branch not reached).

graph structure (the discontinuity curves mΩ), eliminates continu-

ous variation, and ensures that neighboring regions have unique

identi�ers (Fig. 5). Both functions 5 and 5pc share the same discon-

tinuities, arising from the evaluation paths dictated by a sequence

of branching decisions. Let< be the number of B operators. We

represent the piece-wise constant function output 5pc(G) at a given
point G using a ternary state vector BG = (B8)<8=1, where each element

B8 is de�ned as follows:

B8 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

× branch 8 not evaluated,

0 predicate of branch 8 evaluated as true,

1 predicate of branch 8 evaluated as false.

(6)

In a single forward program pass, our method tracks each branching

predicate that is evaluated and updates the corresponding element in

the state vector according to Eq. (6). Figure 5 illustrates this process.

Importantly, a single evaluation of 5pc at G is linear in the number

< of branches; unlike A-X , we do not evaluate all branches. Each

continuous region of 5 is uniquely identi�ed by a base-3 integer,

that is: every G in the region, 5pc(G) evaluates to the same state

vector. This transformation removes all continuous variations from

5 , thereby facilitating robust boundary sampling (§4.3).

4.3 Sampling the boundary by segment snapping

We sample the boundary by point-sampling our piecewise constant

function 5pc (Fig. 4c). We can reliably detect when a line segment

crosses a discontinuity by comparing the function values at the

segment’s endpoints (Fig. 6). If these values di�er, we know with

certainty that the segment intersects a boundary. We can then fur-

ther localize the boundary e�ciently using a bisection search.

Initialization. We start with an initial set of line segments uni-

formly distributed over Ω. Each segment is created by generating

a set of strati�ed jittered points over a grid as the �rst endpoint,

then adding a second endpoint at a �xed distance (equal to the ini-

tial grid spacing) in a random direction.2 This grid is used only for

segment initialization, the �nal function evaluation is performed at

2The segment length can also be a random variable U[0, 1⇑gridsize], which ensures
all points on the boundary are sampled with non-zero probability; in practice we found
this to not be necessary for our applications.

...

...

Iteration 1 Iteration 2 Iteration N

Fig. 6. Segment snapping. Starting with a set of randomly initialized line
segments (le�), we evaluate the piecewise-constant function 5 _?2 at both
of its endpoints. If the values di�er, we know that the segment intersects
a discontinuity, which we localize using bisection search (right). If the
segment crosses multiple discontinuities, we may localize points on multiple
boundaries (right-top). If the values are the same, we discard the segment;
this may miss thin regions, but we have found it to not be a major limitation
in practice.

the boundary after snapping, unlike A-X [Yang et al. 2022], which

operates on the initial regular-grid points.

Bisection search. Now, for each segment, we evaluate 5pc at both

endpoints. If the values di�er, indicating a boundary crossing, we

split the segment at its midpoint and recursively apply the same

process to the two spawned halves. This bisection search continues

until the segment length becomes su�ciently small (typically after

about 15 iterations, reducing the original width by a factor of 2−15),

at which point the midpoint provides an accurate sample of the

boundary location. Figure 6 illustrates this process.

4.4 Branch index detection

After locating points on the discontinuity boundary via segment

snapping, our method determines which B operator de�nes the

boundary through each point (Fig. 4d). This information supports

three tasks: (i) computing boundary velocity through automatic

di�erentiation; (ii) estimating the sample density required by our

Monte Carlo estimator of the boundary integral in Eq. (10); and

(iii) evaluating the integrand on both sides of the boundary.

ACM Trans. Graph., Vol. 44, No. 6, Article 209. Publication date: December 2025.
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0 1

g_i is the ith boundary function

= argmin( ), ,

{ }

branch 1

branch 2

branch 3

boundary samples are assigned to 

one of three             branch indices{ }

 |g_3|  |g_2|  |g_1|

Fig. 7. Assigning image-space boundary samples to branch indices. Segment
snapping produces samples on the discontinuous boundaries of the function
5 ; however, we only know each sample’s coordinates in image space. In
order to compute the boundary derivative, we must also identify the index
of the branch operator B8 whose boundary each sample lies on. To do this,
we use the fact that the boundary of B8 is the zero level set of its boundary
function 68(G ;\). Therefore, we associate each boundary point with the
branch 8 for which ∣68(G ;\)∣ is minimal during function evaluation.

For each boundary point G , we know that it must lie on the zero

level set of some implicit function 68 corresponding to a B operator.

In theory, we should have 68(G ;\) = 0 for the correct operator.

However, due to numerical precision in �oating-point arithmetic

and due to �nite number of bisection steps in segment snapping, the

point may not lie exactly on the boundary. Therefore, we identify

the responsible B operator by �nding the index 8 that minimizes

∣68(G ;\)∣ during function evaluation. We visualize branch index

detection in Fig. 7.

This approach does not require exhaustive evaluation of all bound-

ary functions (for example, we do not evaluate 68 for branches that

are not taken), only those that are encountered during 5 ’s evalua-

tion path for a particular input are tested. While in theory multiple

boundary functions close to zero may result in incorrect branch

detection, in practice we have found it to be mostly not an issue; we

further discuss this and a failure case in §6.

Our approach not only provides the index of the relevant B oper-

ator but also gives us access to the value of 68 , which we maintain

in the automatic di�erentiation computation graph; it is essential

for computing 68 ’s derivatives needed for the boundary velocity.

4.5 Probability density estimation

The distribution of points on the boundary resulting from segment

snapping is not uniform in general, as it depends on both the initial

line segment distribution and the boundary geometry mΩ. To ac-

count for this non-uniformity in our Monte Carlo estimator of the

boundary derivative integral, we estimate the probability density

of the samples using kernel density estimation (Fig. 4e). For each

boundary point, we compute the probability density based on its

local neighborhood. Speci�cally, when the domain is 2D, for a point

G on the boundary, we estimate its probability density as

?(G) = :

=

1

2':
, (7)

where the hyperparameter : is the number of nearest neighbors, = is

the total number of samples, and': is the distance to the:-th nearest

neighbor [Mack and Rosenblatt 1979]. This estimator is biased but

consistent [Berry and Sauer 2017]. We discuss its properties and

extensions to more dimensions in Appendix A.

4.6 Two-sided integrand evaluation by program transform

The boundary derivative at each point G on the boundary depends

on the value of the integrand 5 on either side of the boundary. Prior

work [Li et al. 2018, 2020] evaluates this by �nding two points (G+

and G−) on opposite sides of the boundary and computing 5 (G+)
and 5 (G−). However, this approach requires carefully choosing an

o�set n along the normal direction, which can be inaccurate when

the boundary is highly curved or when the integrand varies rapidly

near the boundary.

Instead, we transform 5 again, this time to evaluate both sides

exactly at the boundary point (Fig. 4f). For a boundary point G cor-

responding to branch operator 8 , we create a transformed function

that takes an additional input sign ∈ {+,−} and forces the branch

operator to take the corresponding path regardless of the sign of

68(G). As shown in List. 7, this is implemented by overriding the

branch condition for the identi�ed operator, allowing us to evaluate

both sides of the discontinuity exactly at the boundary point.

4.7 Boundary velocity and derivative computation

Wenowhave all the components necessary to compute the boundary

derivative. First, the set of points {G8}=8=1 on the boundary mΩ by

snapping line segments to the boundary (§4.3). Second, the sampling

probabilities {?8}=8=1 for these points, computed using kernel density

estimation (§4.5). Third, the integrand di�erence 5 (G+8 , \)− 5 (G−8 , \)
for each boundary point (§4.6). We now discuss how to compute

the boundary velocity together with the boundary derivative.

The boundary velocity m\G⊥ represents how a point G ∈ mΩmoves

in response to changes in the parameter \ . The implicit function

theorem relates m\G⊥ to the derivatives of the boundary function

68(G ;\), given by

m\G⊥ = −
m\68(G)
∣∣mG68(G)∣∣

, (8)

and we assume ∣∣mG68(G)∣∣ > 0 everywhere. 6 only needs to be

di�erentiable almost everywhere; its �rst derivative can have jump

discontinuities, which we exploit in some applications §5.

Although the implicit function theorem gives us Eq. (8), we do not

compute m\68(G) directly for each boundary point (or each branch)

since this would require multiple reverse-mode passes. Instead, we

compute 68(G)⇑∣∣mG68(G)∣∣ and leave 68(G) in the numerator undif-

ferentiated. mG68(G) is computed using forward-mode autodiff.

Now, substituting the boundary velocity from Eq. (8) in the bound-

ary derivative integral Eq. (3), we get

m\ �1 = −∫
mΩ
(5 (G+;\) − 5 (G−;\)) m\6(G)

∣∣mG6(G)∣∣dG . (9)

We can now simultaneously compute the boundary velocity and

derivative using the sampled points and applying reverse-mode
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autodiff with respect to the parameters \ to the expression

m\ �1 = −AD\

⎧⎪⎪⎨⎪⎪⎩

=

∑
8=1

(5 (G+8 , \) − 5 (G−8 , \))
?8

68(G8)
∣∣mG68(G8)∣∣

⎫⎪⎪⎬⎪⎪⎭
. (10)

To ensure the correct boundary velocity (and derivative) is com-

puted, we only propagate the gradients backward through 68(G8)
(which results in m\68(G8) once di�erentiated) and “detach” all other
terms (in autograd terms). This allows us to compute the boundary

derivative for all points, irrespective of the boundary they are on,

and with respect to all components of \ simultaneously using only

a single reverse-mode autodiff pass.

4.8 Practical Implementation

We implement our approach as a Python-based compiler that trans-

forms discontinuous shader programs written in SLANG.D [Ban-

garu et al. 2023] supplemented with a new type of tag—[Disc] to

mark discontinuous if-else statements. Our compiler converts

the input program into another that e�ciently computes boundary

derivatives. Our program transformation is fast (30ms on average

for our examples). It only requires two passes through the program’s

DAG structure. Crucially, our compilation time scales only linearly

with the number of branches, rather than enumerating all possible

evaluation paths, which scales exponentially (e.g., like A-X).

Segment snapping, probability density estimation and bound-

ary derivative computation, and the gradient-based optimization

code are implemented in PyTorch [Paszke et al. 2017]. We invoke

each of the transformed SLANG.D programs from Python during

boundary derivative computation as needed. The continuous parts

of the derivative are handled by PyTorch and SLANG.D’s automatic

di�erentiation system. The two systems interoperate by invoking

the SLANG.D shader’s forward and backward subroutines through

a custom PyTorch autograd function.

We provide an outline of our practical implementation in Appen-

dix B.2. We will release our source code upon acceptance.

5 RESULTS AND APPLICATIONS

We compare our method with previous boundary-derivative com-

putation methods in §5.1 and showcase several applications in §5.2.

5.1 Comparison with boundary derivative methods

Broadly, there are two approaches to computing boundary deriva-

tives, (i) boundary sampling methods [Bangaru et al. 2020; Li et al.

2020] that require specialized sampling routines, and (ii) area sam-

pling methods that make approximation errors [Yang et al. 2022;

Laine et al. 2020] or produce high-variance estimates [Bangaru et al.

2020].With equal samples, boundary-samplingmethods usually esti-

mate derivatives with greater accuracy. Ours is a boundary-sampling

method that reduces constraints on discontinuous programs. Nei-

ther does it require specialized boundary sampling routines nor

di�eomorphism constraints [Bangaru et al. 2021]. Contrary to prior

methods that are highly optimized for speci�c problems, our goal is

to support a wide variety of discontinuous programs.

Discontinuities with explicit sampling routines. We �rst consider

the simple example of computing a circle’s derivative in Fig. 8, for

which all methods compute a high quality derivative.

Discontinuities without explicit sampling routines. Next, we dif-

ferentiate a more complicated program in Fig. 9. Constructing a

sampling routine for it is challenging since its boundary cannot be

expressed explicitly, which limits our comparisons to area-sampling

methods. Discontinuity blurring requires careful tuning of the blur-

ring width for accurate gradients and the warp �eld induces high

variance for WAS. A-X and our method handle this example well.

Area sampling cannot resolve high-frequency features at low sam-

pling rates. Area-sampling methods can be accurate when the sam-

pling rate is high relative to the integrand’s variations (Figs. 8 and 9).

However, their accuracy degrades signi�cantly at lower sampling

rates. We demonstrate this with two speci�c cases: a) multiple dis-

continuities in close proximity in Fig. 10; b) high frequency continu-

ous variations in Fig. 11. Both limitations are expected, since without

su�cient sampling at or near the boundary, area-sampling methods

cannot resolve high-frequency features near it. Our method handles

these examples well because it samples the boundary.

A-X struggles with a large number of discontinuities and branching.

Among current systems, A-X typically handles the most general set

of discontinuous programs so we focus the rest of our comparisons

on it. Applications used in practice often contain a large number of

discontinuities (rasterizers) and can have large tree-like structures

(CSG trees). For the applications in §5.2 ourmethod is able to support

we �nd that A-X fails to compile most of the times because the

number of discontinuities is fairly large.

We �rst compare A-X with our method and Di�VG for painterly

rendering in Fig. 12. Here, the goal is to optimize the colors, position

and radius of a set of ordered opaque disks to match a target image.

This example highlights A-X ’s �rst limitation at larger scales — its

compiler is not well suited to a large number of discontinuous

statements (each circle corresponds to one) and times out for more

than 200 disks. On the other hand, the compilation e�ort required by

our system is minimal (two DAG traversals) and is independent of

the number of disks, taking ∼30ms. Queries can also be accelerated

with bounding volume hierarchies (BVH) and quadtrees; we use a

regular-grid-based acceleration structure. Our implementation takes

∼90B for 2000 circles, while Di�VG takes ∼160B ; these numbers are

only indicative of performance potential, not a direct comparison,

since Di�VG is a more complete system than our simple vector

graphics program.

The second issue is that A-X always evaluates all branching state-

ments (see App D.3 in their paper), regardless of whether the current

evaluation point reaches them. Consider the checkerboard exam-

ple in Fig. 13, which is expressed using two binary trees. For a

query point, our method traverses the tree and evaluates exactly

one if-else statement at each level of the tree, resulting in lin-

ear runtime growth with tree depth. In contrast, A-X evaluates all

branches at each level and its runtime grows exponentially with

tree depth, severely limiting the maximum depth it can support. At

larger depths, A-X ’s derivative accuracy is also compromised since

there can be multiple discontinuities between evaluation points.
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Forward Finite Di�erences: -2.50 Ours: -2.52 ± 0.004 A-Delta: -2.56 Discontinuity blurring: -2.51 WAS: -2.51 ± 0.0002 

Fig. 8. Boundary sampling routine available. In the simple example above, we compute the derivative of the integral of a circle (0 inside, 1 outside) over the
image plane with respect to its radius. Its derivative is mA �1 = −2cA ≈ 2.51, (A = 0.4). All methods compute it fairly accurately at equal sample count: Di�VG [Li
et al. 2020] (derivative = 2.51, not visualized) with its specialized edge sampling routine, discontinuity blurring, WAS [Bangaru et al. 2020], A-X and ours.

Forward Finite Di�erences: 0.0225 Ours: 0.0240 ± 0.006 A-Delta: 0.0233 Discontinuity blurring: 0.0148 WAS: -0.150 ± 3.52 

Fig. 9. No explicit boundary sampling routine. In this example, the shape above does not have an easily computable boundary sampling routine, so we only
compare with area-sampling methods. Blurring the boundary has a noticably high bias, which can be reduced with a smaller blurring width, at the cost
of increased variance (determining a blurring width that works generally in general se�ings is non-trivial). Warped area sampling (WAS) su�ers from high
variance since the complicated nature of the boundary induces a rapidly changing warp field, including high variance regions in the center away from the
boundary. Both A-X and our method compute high-quality derivatives.

(a) Function (b) Finite di�erences
0.137

(d) A-delta
0.0

(e) Discontinuity blurring
-0.375

(f) Warped area sampling
-0.169

(c) Ours
0.1744

Fig. 10. Insu�icient sampling near multiple discontinuities. For the piecewise-
constant function (a), we compute derivatives of the translation of both
discontinuities (b). Using a 4x4 sampling grid (with additional samples
for segment snapping in our method), we compare di�erent approaches.
Our method achieves accurate sampling and correct derivative signs. A-X
produces zero derivatives due to multiple discontinuities between evaluation
points, while both discontinuity blurring (e) and warped area sampling (f)
yield incorrect signs due to insu�icient sampling near discontinuities.

(a) Function (b) Finite di�erences
-1.0

(d) A-delta
0.78

(e) Discontinuity blurring
0.0

(f) Warped area sampling
-0.85

(c) Ours
-1.0

Fig. 11. Insu�icient sampling near high-frequency continuous variation.When
the integrand has high-frequency variation between the discontinuity and
the evaluation points, A-Delta’s gradient sign can flip. Discontinuity blurring
only samples regions of zero contribution. Both WAS and ours compute
derivatives with the correct sign, but WAS has higher variance.
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Ours: 1000 circles
with disp.

Ours: 400 beziers
with disp.

Target OursDi�VGA-Delta
200 circles

Di�VG Ours
2000 circles

Fig. 12. Painterly rendering. Given a target image (le�), we optimize a set of randomly initialized primtives using an !2 loss to produce a painterly renderings.
With 200 circles, all methods capture the rough structure of the target. With 2000 circles, both our method and Di�VG produce painterly renderings with lower
reconstruction error, while A-X does not scale to the large number of primitives (Fig. 13). Unlike Di�VG, our method does not require specialized boundary
sampling routines; it supports non-standard primitives like noise-deformed circles and bezier curves (final two columns) .

(a) Checkerboard with depth=3 (b) Derivative accuracy vs number of samples
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(c) Forward runtime vs depth of the tree

Tree depth
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Ours
A-Delta

Ours
A-Delta
True derivative

Fig. 13. Branching structures. A checkerboard pa�ern (a) is implemented as the sum of the outputs of two binary trees, one along each axis. Each axis has
23 − 1 discontinuities (3 is the tree depth). We compute the derivative with the relative position of all discontinuities and compare its accuracy at di�erent
sampling rates for 3 = 7 in (b). Up until 642 samples, A-X computes zero derivatives because there are multiple discontinuities between all evaluation points
(Fig. 10). A-X runs out of memory at 5122 samples; this could be because it assumes all branches are taken and evaluates all 23 nodes in the tree, irrespective of
whether they are reached. Our method consistently computes non-zero derivatives and converges to the true derivative faster than A-X . Since A-Xtakes all
branches its runtime grows exponentially with 3 , while ours grows linearly. We normalize both method’s runtimes at depth 3 = 1 for visualization purposes;
our method appears to have no increase in runtime up until depth 50 because our runtime is dominated by kernel launch overhead.

5.2 Applications

Next, we show a wide range of applications implemented using

our method. In all code listings, for conciseness, we only show the

piecewise-constant transformation along with the input program

(see Appendix B.2 for the keywords used in the listings).

1 float bilerp_step(float2 x, float* p, int& region) {

2 float s = bilerp(x, theta); // Bilinear

interpolation of grid values in "p"

3 [Disc]

4 if (s > 0.0) { // Step activation

5 if (M_PW_CONST) region = hash(region , 0);

6 return 1.0;

7 } else {

8 if (M_PW_CONST) region = hash(region , 1);

9 return 0.0;

10 }

11 }

Listing 1. We optimize a binary-valued function, constructed by
thresholding a bilinearly interpolated grid, by automatically computing
its boundary derivatives.

5.2.1 Binary function optimization. We �t a binary-valued target

function by optimizing the parameters of a binary-valued discon-

tinuous program which thresholds a bilinearly interpolated grid of

values (List. 1) Since the program is binary-valued, only its bound-

ary derivative is non-zero. When the target is provided as a set of

discrete values (like a raster image), we convert it to a continuous

signal using nearest-neighbor interpolation. We do not have access

to the discontinuity locations of the target.

Figure 14 shows an example �tting a binary raster image. Fig-

ure 15, compares with two baselines, by replacing our thresholdwith:

i) a ReLU activation (clamped between 0 and 1 as done by Karnewar

et al. [2022]), and ii) a sigmoid activation. We optimize an L2 loss

as an integral over the image space with 1000 steps of the Adam

optimizer, tuning learning rates for each method. This takes about

30 seconds for all methods. As shown by Belhe et al. [2023], the con-

tinuous ReLU and sigmoid activations blur the discontinuity. Our

method extends theirs (for binary functions) to handle the setting

where the discontinuity boundary is not known apriori and can be

optimized. The resulting output is discontinuous by construction

and accurately preserves the target’s discontinuities.
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21Initial 5 10 15 25 1000 Target

Fig. 14. Binary raster image fi�ing. We start with a random initialization of a bilinearly interpolated thresholded grid, resulting in several discontinuous
islands. The boundary derivative encourages each point on these discontinuities to either move along or against the normal direction (causing the islands to
expand or shrink) to be�er match the target, resulting in a sharp reconstruction. See Fig. 15 for a close up comparison.

Step (Ours) ReLU Fields SigmoidTarget

E
rr

o
r 

Im
a
g
e

Fig. 15. Non-discontinuous activations blur the discontinuity. In this example,
we fit a binary-valued raster image, with three di�erent methods, each of
which bilinarly interpolates scalar values on a grid followed by their respec-
tive activations. The sharp discontinuities in the input can only be preserved
by our method which uses a discontinuous step activation, whereas the
other two use continuous activations resulting in blurring.

Swept surfaces. We use the same shader to �t a 2D swept surface

(Fig. 17b), formed by sweeping a 2D brush along a 1D curve (Fig. 17a).

Evaluating a swept surface requires checking if the query point is in-

side the brush for multiple brush orientations along the curve, which

is computationally expensive, especially for brushes represented by

costly functions like neural SDFs. Fitting a binary-valued shader

enables fast inference, o�oading the expensive inside-outside tests

to the optimization phase. Our optimization takes around 20 seconds

for 400 iterations; inference for our method takes 0.2ms for a 5122

input, 10x faster than the original swept surface (in which the brush

has 100 repeated steps along the curve).

3D inside-outside tests. The same shader extends to 3D function

�tting. We show this by �tting a 3D winding number �eld using

a trilinearly interpolated thresholded grid in Fig. 16. The �tting

process takes around 9 minutes for 1000 iterations. The training

time is dominated by the target evaluation on CPU; inference on

our method is fast, taking 1ms for an input of 2563 points.

We can also optimize (recover) the geometry of the primitives

in a CSG tree (with a �xed topology) (Fig. 18) by expressing it as

a program. The tree of Listing 2 returns 1.0 if the evaluation point

is inside the shape and 0.0 otherwise. The SDF values are used as

boundary functions 6.

Initial Ours Target

Fig. 16. Fi�ing 3D binary functions. We fit a 3D winding number field
(thresholded at 0.5) using a trilinearly interpolated thresholded grid. Start-
ing with a randomly initialized grid (le�), we optimize it to fit the target
surface (right), the final reconstruction is in the middle. We render all three
for visualization. Since we perform optimization in 3D, segment snapping,
probability density estimation and all other steps are done in 3D too.

1 // We evaluate the SDFs at each point x and store

the result in the following variables

2 sphere , cube , cyl_z , cyl_x , cyl_y = // SDF values

3 [Disc]

4 if (sphere > 0.0) { // Inside sphere

5 if (M_PW_CONST) region = hash(region , 0);

6 [Disc]

7 if (cube > 0.0) { // Inside cube

8 if (M_PW_CONST) region = hash(region , 2);

9 [Disc]

10 if (cyl_z < 0.0) { // Outside cylinder z

11 if (M_PW_CONST) region = hash(region , 4);

12 [Disc]

13 if (cyl_x < 0.0) { // Outside cylinder x

14 if (M_PW_CONST) region = hash(region , 6);

15 [Disc]

16 if (cyl_y < 0.0) { // Outside cylinder y

17 if (M_PW_CONST) region = hash(region , 8);

18 res[thread_idx] = 1.0;

19 return;

20 }

21 }

22 }

23 }

24 }

25 return 0.0;

Listing 2. We support nested [Disc] if statements, enabling derivative
computation of CSG primitives are only di�erentiable almost everywhere.
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(a) Swept surface path (b) Initial (c) Intermediate

(d) Ours (e) Target (f) Absolute error

0

1

Fig. 17. 2D Swept Surface. Here, the goal is to fit the inside-outside test of a
brush swept along a curve (a) resulting in a binary-valued swept surface (e).
Similar to Fig. 15, we use a binary-valued grid to fit the target. Starting from
a random initialization (b), our method progressively improves the fit (c)
and is able to accurately fit the target (d,f), enabling much faster inference
of this swept surface.

–

∩ ∪

∪

(a) CSG tree (b) Initial

(c) Ours (d) Target

Fig. 18. Constructive Solid Geometry (CSG). Given a CSG tree with fixed
topology (a), we optimize the position and scale of each primitive to match
a target in 3D (d). We can match the target accurately (c) starting with
randomly perturbed initial parameters (b).

5.2.2 Non-photorealistic rendering (NPR). NPR techniques such as

mosaicing and painterly rendering abstract images using a collection

of primitives. Our method enables these applications by optimizing

the primitive’s parameters through gradient-based optimization.

Mosaicing. Image mosaicing captures the overall structure of an

image using a mosaic of tiles. While Haeberli [1990] pioneered the

1 float voronoi_mosaic(float2 x, float* p, int out) {

2 float3 color = 0.0;

3 float min_dist = INF;

4 // Loop over all points

5 [MaxIters(N_POINTS)]

6 for (int i = 0; i < N_POINTS; i++) {

7 float2 curr_p = float2(p[5*i], p[5*i+1]);

8 float3 curr_color = float3(p[5*i+2], p[5*i+3],

p[5*i+4]);

9 // Check if the current point is the closest

10 [Disc]

11 if (length(x - curr_p) < min_dist) {

12 // pw-const hash uses a different index (2*i)

for every if statement in the loop

13 if (M_PW_CONST) region = hash(region , 2*i);

14 // Update color and min distance

15 color = curr_color;

16 min_dist = length(x - curr_p);

17 }

18 }

19 return color , region; // color is the output of

the original program , region is the output of

our pw-constant transform

20 }

Listing 3. We support [Disc] if statements within for loops, each of which
is treated independently which allows us to optimize multiple decision
boundaries in the voronoi mosaic program.

use of Voronoi diagrams through random point placement, this

approach lacked optimization of point locations, resulting in tiles

that failed to align with edge features of the original image; Hausner

[2001] overcame this using a post-processing edge-avoidance step.

We represent the image using a Voronoi program (Listing 3) which

takes a set of 2D points and their colors as input and outputs the color

of the closest point. Figure 19 (top row) shows the resulting mosaic,

where tile edges align with image edges. We can also directly extend

our approach to mosaics with complicated boundaries warped with

Perlin noise, see Fig. 19 (bottom row).

Painterly rendering. Painterly rendering [Hertzmann 1998] repre-

sent images through a collection of brush strokes or other primitives.

Li et al. [2020] produce painterly rendering by optimizing simple

primitives (ellipses, polygons, and Bézier curves), but their approach

is di�cult to extend to more complicated primitives. We handle all

the primitives they can (Fig. 20) as well as others that they cannot

(Fig. 12, two rightmost columns). See our program in Listing 4.

Cel shading. Our method also supports NPR-based shading pro-

grams like cel shading and estimates derivatives with camera loca-

tions and cel thresholds automatically. These can be used to match

target images provided by artists, which we demonstrate in Fig. 21.

5.2.3 Di�erentiable ray marching. Geometry reconstruction from

multi-view images commonly represents geometry as an implicit

function, typically a signed distance function (SDF), maps its zero-

level set to a volume via a blurring operation and then render images

through volumetric ray-marching [Yariv et al. 2021;Wang et al. 2021;

Miller et al. 2024]. The volumetric mapping is crucial since it con-

verts the discontinuous boundary derivative (for the surface) which

cannot be handled by standard auto-di� systems into a continuous
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Initial Iteration 5 Iteration 10 Iteration 15 Iteration 30 Iteration 60 Iteration 150 Iteration 495 Target

Initial Iteration 5 Iteration 10 Iteration 15 Iteration 20 Iteration 30 Iteration 60 Iteration 390 Target

Fig. 19. Mosaicing.We fit target images (rightmost) using two di�erent mosaic programs: a Voronoi mosaic program List. 3 (top row) and a Perlin noise-warped
mosaic program (bo�om row). Starting from random point locations and colors (le�most), we optimize these parameters using an !2 loss to match the target.
The derivatives with respect to point locations arise solely from the boundary term, guiding the points to automatically align with the target’s edges over the
course of optimization (middle columns).

(a) Initial (b) Optimized (c) Target

Fig. 20. Painterly rendering with Bézier curves. Since our method computes
derivatives of arbitrary di�erentiable implicit boundaries automatically, it
supports optimizing Bézier curves (we use a quadratic Bézier’s here). Given
a target (c) and a random initialization (a), our method produces a painterly
rendering of the target (b) through gradient-based optimization.

1 p, opacity , prim_color = // params that define

primitive geometry , opacity and color

respectively

2 float3 final_c = 0.0;

3 float alpha_acc = 1.0;

4 [MaxIters(N_PRIMS)]

5 for (int i = 0; i < N_PRIMS; i++) {

6 int t = primitive_type[i];

7 float o = opacity[i];

8 float3 c = prim_color[i];

9 float impl_val = 0.0;

10 if (t == 0) { // Ellipse primitive

11 impl_val = ellipse_implicit(x, p, i);

12 } else if (t == 1) { // Triangle primitive

13 impl_val = triangle_implicit(x, p, i);

14 } else if (t == 2) {

15 // Other primitives like beziers , polygons etc.

16 }

17 [Disc]

18 if (impl_val < 0.0) {

19 if (M_PW_CONST) region = hash(region , 2*i)

20 final_c += alpha_acc * o * c;

21 alpha_acc *= (1.0 - o);

22 }

23 }

24 return final_c;

Listing 4. We can also write a di�erentiable rasterizer in our system that
supports a wide variety of primitives given just their implicit functions.

area derivative (for the volume). Our method skips this volume

mapping and directly computes the boundary derivative.

Some previous works [Vicini et al. 2022; Bangaru et al. 2022]

also directly estimate the boundary derivatives by reparameterizing

the integrand’s domain and others blur the boundary only for the

derivative (not for the primal) [Wang et al. 2024]. All these methods

are specialized to SDFs and can support high-order light transport

e�ects. However, they all require specialized routines to compute

derivatives, while we do not.

We take a di�erent approach and show that di�erentiating a

simple ray-marching loop with an arbitrary implicit function (not

necessarily an SDF) using our method can recover geometry well.

The program in Listing 5 steps along the ray and returns the color at

the �rst point inside the object. Even with this simple setup, we are

able to recover geometry well in challenging cases like Fig. 22. Here,

the implicit function is a trilinearly interpolated scalar-valued grid

that is not restricted to be an SDF. Since our method is not limited

to implicit functions of a speci�c form, it can be directly applied to

optimize other implicit geometries.

5.2.4 Di�erentiable 3D rasterization. In the di�erentiable rendering

literature, there exist several works focused on rasterization, e.g.

Laine et al. [2020] rasterize triangles and Kerbl et al. [2023] rasterize

3D Gaussians. These systems are highly performant and support a

large number of primitives. However, implementing these systems

requires signi�cant e�ort, especially implementing routines for

derivative estimation, which is error-prone.

Instead, we can implement a general-purpose rasterizer in our sys-

tem. While it is highly performant too, its goal is not to outperform

the highly-engineered systems discussed above, but rather to mini-

mize user e�ort during implementation. Given a set of sorted and

projected primitives, we can directly di�erentiate the rasterization

loop below to compute their boundary derivatives (List. 4).

The code in Listing 4 has if-else statements to select between

primitive types that are not marked with the Disc tag, these do not

a�ect derivative computation. This rasterizer is the backbone of

several of our applications like painterly rendering (which supports

vector graphics primitives such as lines, Bezier curves, polygons,
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Initial Optimized Target ErrorCel threshold

Ours FD Ours FD

Light position

Fig. 21. Cel shading. Recovering cel thresholds from target images (e.g. provided by an artist) can reduce the manual e�ort in hand-tuning shader parameters.
In general, the shading discontinuities are not parameterized easily, so automatically sampling them is crucial. (Le�) We di�erentiate with respect to cel
thresholds and light positions; our derivatives match finite di�erences (FD) closely. FD shows some artifacts due to the di�iculty in tuning n . (Right) We
demonstrate that these derivatives can be used to recover the unknown cel thresholds of a shader given a target raster image.

Initial Ours Target

Fig. 22. Di�erentiable ray-marching of implicit surfaces. Our method au-
tomatically computes boundary derivatives of a ray-marching shader
(List. 5) with arbitrary di�erentiable implicit geometry (a non-SDF trilinearly-
interpolated grid in this example). The goal is to recover the high-genus
target geometry given multi-view images. Starting from a sphere and us-
ing Chang et al. [2024]’s optimizer, we recover the challenging target geom-
etry, without any specialized boundary sampling routines.

1 org , dir , dt = ... // ray origin , direction and step

size

2 p = ... // params of implicit geometry and shading

3 color = ... // output color

4 [MaxIters(MAX_STEPS)] // ray marching loop

5 for (int i = 0; i < MAX_STEPS; i++) {

6 // Current point on the ray

7 float3 pos = org + i*dt*dir;

8 // Discontinuous inside -outside test

9 float implicit_value = implicit_function(pos , p);

10 [Disc ,SkipLoop]

11 if (implicit_value < 0.0) {

12 // SkipLoop treats all ifs in the loop as the

13 // same , they are all hashed with index 0

14 if (M_PW_CONST) region = hash(region , 0);

15 color = shading(pos , p); // Shading computation

16 break;

17 }

18 }

19 return color;

Listing 5. We can di�erentiate multiple if statements, each corresponding
to a di�erent depth-plane in the ray-marching for loop, enabling geometry
optimization of arbitrary di�erentiable implicit geometry.

ellipses and circles) discussed in §5.2.2, and di�erentiable rasteriza-

tion of triangles and ellipsoids discussed below. In our applications,

we additionally combine it with a grid-based acceleration structure,

enabling it to scale to hundreds of thousands of primitives.

Initial Ours Target

Fig. 23. Di�erentiable triangle mesh rasterization. Given multi-view images
and known material and lighting, we optimize an initial sphere triangle
mesh to a bunny using di�erentiable triangle rasterization and Laplacian
preconditioning [Nicolet et al. 2021]. Unlike prior work which requires
specialized handling of visibility discontinuities, ours does not require any
special handling; it automatically samples the boundary and computes
derivatives.

Triangle meshes. In Fig. 23, we show that our simple di�erentiable

rasterizer can be used to optimize triangle meshes to �t the geometry

of an object from multi-view images. Our method can optimize tri-

angle meshes with hundreds of thousands of triangles without any

additional engineering e�ort to compute derivatives. We stress that

although our method is not as performant as nvdiffrast [Laine

et al. 2020] (nor is it as fully-featured), it is much simpler to im-

plement, making it ideal for quick prototyping and exploring non-

standard primitives for rasterization.

Ellipsoids. Next, we demonstrate our method’s �exibility by ras-

terizing 3D ellipsoids using the same rasterizer. We �t the ellip-

soids to binary-valued multi-view targets, this ensures all geometry-

related derivatives are purely from the boundary derivative. Fig. 24

shows an example of occupancy function �tting and Fig. 25 shows

an example of shadow art. In this setup, we splat 3D ellipsoids (ini-

tialized randomly) as 2D ellipses with constant opacity and �xed

color; we then alpha blend them to compute pixel colors. Di�erently

from Kerbl et al. [2023], we use ellipsoids instead of 3D Gaussians

and so there is no continuous opacity fall-o� in screen space, it

discontinuously drops to zero at the boundaries of the 2D ellipses,

which ensures the geometry-related derivatives are only due to

discontinuities. Our method is able to �t the binary targets in both

of the examples with high accuracy.

5.2.5 Inverse swept surfaces. In Fig. 26, we solve the inverse of the

swept surface problem from Fig. 17. Given a swept surface and a
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Initial Ours

Ours (Visualization) Target

Fig. 24. Di�erentiable ellipsoid rasterization. The goal is to learn 3D object
occupancy represented as constant opacity 3D ellipsoids, given multi-view
binary images. Starting from a set of randomly initialized ellipsoids, they
are spla�ed onto the screen as 2D ellipses and alpha blended to form the
pixel intensity. All ellipsoid derivatives excluding opacity (scaling, rotation
and translation) are purely discontinuous. Using our method, all parameters
can be optimized without any interior or continuous derivatives. To refine
the number of ellipsoids, we add and remove ellipsoids as needed, similar
to 3D Gaussian Spla�ing [Kerbl et al. 2023].

trajectory, we recover the shape of the brush that produced the

swept surface. We model the brush as a binary-valued grid (from

List. 1) initialized randomly and optimize for its parameters to match

the swept surface under an !2 loss. Our method is able to recover

the stroke parameters with a high degree of accuracy.

5.2.6 Discontinuous texture optimization. While popular di�eren-

tiable renderers [Jakob et al. 2022; Li et al. 2018; Zhang et al. 2020;

Laine et al. 2020] can all compute boundary derivatives with respect

to geometry discontinuities, they only support continuous textures,

even though textured objects in the real world are often piecewise

continuous. To demonstrate the ability of our di�erentiable ras-

terizer to support discontinuous textures, we optimize the albedo

texture of the earth in Figure 27, where the albedo is discontinuous

across the land and water boundary. For every point on the surface

of the earth, if the point is on the land, the albedo is retrieved from a

texture map as usual, or else if it is water, the albedo is a single water

color. The land and water boundary is represented using a bilinearly

interpolated thresholded grid. Compared to continuous textures,

discontinuous textures can provide unique guarantees (e.g., the wa-

ter color is constant) and enable semantic user editing (see Figure 27,

rightmost column).

5.3 Other properties and ablations

We discuss some properties of our algorithm and demonstrate its

sensitivity to hyperparameters next.

(a) Shadow Images

(b) Initial (c) Ours

Fig. 25. Shadow art using di�erentiable ellipsoid rasterization. (a) Given 3
target images, (c) the goal is to construct a set of opaque or translucent
3D ellipsoids whose shadows cast by 3 orthogonal spotlights onto 3 walls
form each image, in the spirit of Mitra and Pauly [2009]. (b) To fit each
shadow image, a set of randomly initialized 3D ellipsoids are di�erentiably
rasterized to 2D ellipses from the position and direction of each spotlight,
using the same method as in Figure 24. The size of the ellipsoids in (b) are
scaled up by 5× for visualization.
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Fig. 26. Inverse 2D Swept Surface.Given a target swept surface and the same
brush path as in Figure 17, we aim to optimize the brush shape (bo�om row),
using a bilinearly interpolated thresholded grid as in Figure 15. Starting from
a randomly initialized grid, our method can fit the target image accurately
up to minor ambiguity due to overlap in the swept brush.

5.3.1 Our method is occlusion-aware. An interesting consequence

of our method’s detection of discontinuities in image-space is that

it automatically reasons about occlusion. In Fig. 28, we have a scene

with a large number of overlapping (and fully occluded) primitives.

Our piecewise-constant function 5 _?2 produces an output similar to

the forward rendering (Fig. 28a) but with constant region identi�ers

instead of constant colors; it automatically culls the occluded parts

of the boundary. Thus, segment snapping reliably detects only the
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Fig. 27. Discontinuous texture optimization. Given 6 multi-view images of the earth (2 shown in top row), with known geometry, uv-mapping, and lighting, we
fit a discontinuous texture so that the land color is spatially-varying while the water color is constant. The discontinuous texture is represented by a bilinearly
interpolated thresholded grid to determine land or water (indicator, bo�om row), a texture for the land, and a single color for the water. We composite all into
a single texture image for visualization (third row). We also show the result of the piecewise constant transform from §4.2 with three colors: white, black,
and gray (second row). Starting from a randomly initialized grid and constant land and water colors (le�), our method can accurately fit the texture and
water color, as well as learn the land and water boundary. We use our discontinuous texture representation to easily edit land and water-specific parts of the
scene (rightmost column): we can blur the land texture while maintaining the land and water boundary (top), change the color of the water (middle), or even
displacement map the geometry to lower the water level (bo�om).

(a) Target (b) Reference (c) Ours (d) Di�VG

Fig. 28. Image-space boundary sampling.Our method samples the boundary
in image-space, where occluded boundary are not visible and thus not
sampled. In contrast, Di�VG starts by sampling an object and then a point
on its boundary; in this scene, most boundary points are occluded, so this
results in sparse derivatives.

unoccluded parts resulting in a high-quality derivative Fig. 28b,c.

In contrast, specialized-routine-based boundary samplers [Li et al.

2020] sample an object and then a point on its boundary without tak-

ing occlusion into account, resulting in sparse derivatives Fig. 28d.

5.3.2 Hyperparameter ablations. To show the e�ect of our hyper-

parameters, we compare derivative error with �nite di�erences

in Figure 29. It practically demonstrates that our method converges

to the reference derivative value with increasing sample count. We

globally set : = 14 for kernel density estimation and the number of

bisection iterations to 15, which we demonstrate are su�cient for

derivative estimation.

6 LIMITATIONS AND FUTURE WORK

Our method makes some assumptions on the input function, which

limits its applicability in some settings and may lead to incorrect

results in others. Handling these limitations is an interesting avenue

for future work. We detail them in the following paragraphs.

Higher dimensions. Our method snaps an initial set of line seg-

ments strati�ed over a regular grid onto discontinuities. It requires

evaluating 5pc at least once at all these locations. The total number

of initial samples scales exponentially with the input dimension 3

for a �xed number of samples per dimension, limiting our method’s

applicability to higher-dimensional settings.

Inaccurate discontinuity detection. Our method relies on bisection

search to detect discontinuities resulting in an exponential decrease

in the distance to the discontinuity with the number of steps. How-

ever, if the number of bisection steps is insu�cient, a discontinuity

may be detected at a point that is not close enough to the disconti-

nuity, resulting in additional bias (in practice, we have not yet found

this to be an issue with 15 or more bisection steps).

Incorrect branch assignment. Branch assignment maps samples G

to the branch index 8 along the function evaluation path that mini-

mizes ∣68(G)∣. If there are multiple 68 ’s close to zero, this can result

in incorrect branch assignment. Although it is possible to construct
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Fig. 29. Hyperparameter ablations.We show the mean and standard deviation of the absolute error (compared against finite di�erences) of the derivative
of the shape from Figure 9 for our three hyperparameters: (a) the number of segment samples, (b) the number of bisection search iterations for segment
snapping, and (c) the number of neighbors : for kernel density estimation. Our method is consistent and converges to the reference derivative with more
samples (a); a small number of bisection iterations (10 − 15) is typically enough to locate the boundary; kernel density estimation is accurate for 10 < : < 20.

a failure case (e.g., introducing 68(G) = 4−10 into the program), we

have not found it to be a practical issue in our applications.

Sources of randomness. Applications that rely on random num-

bers seed them uniquely for each point in the domain. This seeding

process is discontinuous, breaking the assumption that all discon-

tinuities are expressed as [Disc] if conditions, which limits our

applicability to these settings. Developing program transformations

that can handle these scenarios will unlock several new applications

and is an exciting avenue for future work.

Limitations of implementation. Our compiler produces piecewise-

constant transformation. To enable this transformation, all loops

must have static upper bounds on iterations (as is required by

SLANG.D), no mutable state or side e�ects to global memory, and

no calls to dynamically dispatched functions, as these prevent the

compiler from statically determining the total number of branch

operators and otherwise make the transformation infeasible. Fu-

ture implementations could potentially compute the transformation

dynamically at runtime to avoid these limitations.

Uniform boundary sampling. Since we assume the boundary func-

tions 68 to be continuous, we can cast boundary sampling as a

(zero) level-set sampling problem. We do so by segment snapping

(§4.3) followed by kernel density estimation (§4.5) to account for

non-uniformities. Recent works [Ling et al. 2025; Chiu 2022] have

explored e�cient methods to uniformly sample level-sets through

ray-casting and Markov Chain Monte Carlo. Replacing segment

snapping with them would obviate the need for kernel density esti-

mation and may be an interesting avenue for future work.

7 CONCLUSION

We present the �rst boundary sampling algorithm that can handle

decision boundaries that are not parameterized by the user. Our

method works automatically and requires almost zero user guidance,

on a standard shader programming language [He et al. 2018; Bangaru

et al. 2023]. We show many applications that were not possible

before, due to the lack of a good derivative computation method. We

believe our work is a signi�cant step towards general di�erentiation

methods for arbitrary user-de�ned functions and shaders.
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A KERNEL DENSITY ESTIMATION ON MANIFOLDS

Please see Berry and Sauer [2017] (Section 3 in their paper) for a

detailed treatment of kernel density estimation on manifolds; we

restate the relevant results here for convenience. Our kernel density

estimator (Eq. (7)) computes the density of points on a manifold mΩ

of codimension 1. Since it uses Euclidean distances in ambient space

Ω and not geodesic distances (which account for curvature of the

manifold) in mΩ as the metric, it results in bias due to the curvature

of the manifold. Nonetheless, the overall estimator, like standard

KDE, is consistent. Intuitively, as Berry and Sauer [2017] explain,
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1 g_i = ... // some function of x and theta

2 [Disc]

3 if (g_i > 0.0) {

4 // ... true branch ...

5 } else {

6 // ... false branch ...

7 }

Listing 6. We start with an input program that contains explicitly tagged
[Disc] (discontinuous) if-else statements.

this is because as the bandwidth of the kernel shrinks, the kernel is

localized to a very small region within which the Euclidian distance

is approximately equal to the geodesic distance.

B SYSTEM IMPLEMENTATION

B.1 Discontinuous program requirements

The program can contain two types of operations. The �rst type

consists of di�erentiable operations, which include any function

supported by SLANG.D’s automatic di�erentiation system, such as

arithmetic operations, trigonometric functions and operations with

manually speci�ed derivatives. The second type is discontinuous

if-else statements, which are preceeded with a [Disc] tag, a

language extension we introduce to mark discontinuities; we detail

it in the next subsection.

The program’s control �ow can include (nested) for-loops and

each iteration can contain di�erent discontinuities. Function calls

are also supported, allowing composition of simpler discontinu-

ous functions into more complex ones. However, recursion is not

supported as it can violate the DAG requirement.

Common non-di�erentiable operations like min and max must be

expressed through explicitly tagged if-else statements. . Non-tagged

if-conditions are also supported, but their derivatives will not be

computed . The presence of non-tagged if-conditions removes all

correctness guarantees for the derivative (even of parameters associ-

ated with tagged if-else statements) and requires careful reasoning;

we show an example in List. 4.

B.2 Program transformations

The transformation process converts the input discontinuous pro-

gram into a form that can compute boundary derivatives. We tra-

verse the program’s DAG in topological order and assign a unique

index 8 to each branch statement. The input program contains dis-

continuous branches that evaluate a boundary function 68(G, \)
to determine which branch to take (Listing 6). In our system, we

implement all function transformations within the same program

and switch between them using boolean �ags. These include the

piecewise constant transformation §4.2 when M_PW_CONST is set,

the branch index detection §4.4 when M_BRANCH_IDX is set, the two-

sided evaluation transform §4.6 when M_TWOSIDED is set, and the

original program when all �ags are false as shown next.

Piecewise-Constant (M_PW_CONST). This mode implements the

piecewise-constant transformation from §4.2. It updates a region

identi�er (region_id) for each branch encountered during program

execution — this has the same e�ect as updating the ternary state B

1 g_i = ... // some function of x and theta

2

3 // ----- branch index detection -----

4 // map the image -space boundary sample x to the

branch condition whose boundary it lies on

5 // if the boundary fn has the lowest |g_i| of all

6 // branches thus far , update g_min , idx_min

7 if (M_BRANCH_IDX && abs(g_i) < abs(g_min) {

8 g_min = g_i; // update min boundary fn value

9 idx_min = i; // update branch idx

10 }

11

12 // ----- two -sided eval or original function -----

13 // When M_TWOSIDED is true and this branch (i) is

the one closest to the boundary (i == idx_min):

14 // - Choose which side to evaluate based on

EVAL_TRUE_SIDE flag

15 // Otherwise:

16 // - Use the original branch condition (g_i)

17 if (( M_TWOSIDED && idx_min == i) ? EVAL_TRUE_SIDE :

g_i > 0.0) {

18 // ----- piecewise constant evaluation -----

19 if(M_PW_CONST) region_id = hash(region_id , 2*i);

20 // ... original program true branch ...

21 } else {

22 // ----- piecewise constant evaluation -----

23 if (M_PW_CONST)region_id = hash(region_id ,2*i+1);

24 // ... original program false branch ...

25 }

Listing 7. Transforming a discontinuous branch statement

which tracks the branching sequence taken by the program. Like

B , region_id is initialized to the same value for all points. During

evaluation, the region identi�er is updated using a hash function

that combines its current value with a unique value for the branch

and the side taken: 28 if the condition is true and 28 +1 if it is false,

see L19 and L23 in List. 7.

Any two inputsG1, G2 that take the same path through the branches

will end up with the same identi�er, while points that take di�erent

paths will end up with di�erent identi�ers (with negligible collision

probability due to the 32-bit hash space). We opt for the hash-based

approach as it is simple to implement and also allows for custom

user-de�ned piecewise constant transformations §5.2.3.

Branch Index Detection (M_BRANCH_IDX). During derivative com-

putation, segment snapping §4.3 uses the piecewise-constant mode

above to draw samples on the boundary. In this mode, we assign

these samples G to the branch 8 whose boundary they lie on. We

do this, by invoking List. 7 with M_BRANCH_IDX set and g_min=∞.

Now as we evaluate the program, we update g_min and idx_min, to

keep track of the index 8 that achieves the minimum absolute value

∣68(G, \)∣ for each branch we encounter, see L7-L10 in List. 7. We

return both the index idx_min which is used for two-sided evalua-

tion and probability density estimation, and the boundary function

value g_min for boundary velocity estimation.

Two-Sided Evaluation (M_TWOSIDED). Weuse idx_min for the two-

sided evaluation 5 (G+) − 5 (G−). For each boundary sample G , we

also need to evaluate the integrand value on either side of the bound-

ary. To do this, we �rst perform the branch index detection above,

and then invoke List. 7 with M_TWOSIDED set and this time we also
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Fig. 30. Timing comparison. For the scene in Fig. 12, we compare the deriv-
ative computation time of our method with finite di�erences for a di�erent
number of circles. Finite di�erences scales as $(=), ours as $(1), see di-
cussion in Appendix B.3.

set 83G_<8= to the index we retrieved from the branch index de-

tection. Now, during execution, when we encounter the branch for

which idx_min == i, we forcefully evaluate either the true or false

branch using the EVAL_TRUE_SIDE �ag, see L15-L16 in List. 7. This

allows for precise, side-speci�c evaluation at the boundary, without

relying on arbitrary epsilon o�sets as used in previous works [Li

et al. 2018, 2020].

B.3 Timing comparison with finite di�erences

Our method computes derivatives using reverse-mode autodiff

which scales as$(1) with the number of parameters being di�eren-

tiated, which is more e�cient than forward-mode autodiff (�nite

di�erences) which scales as $(=), we show an example in Fig. 30.
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