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Fig. 1. We design a procedural pipeline that generates hair grooms using a small set of guide strands and artist-friendly hair grooming operators. (a) Given

unstructured hair strand geometry, we propose optimization strategies to (b) fit the guide strands and grooming operator parameters of the procedural groom.

We can then edit the hair shape and style by (c) modifying the guide strands and (d) changing operator parameters. Head model courtesy of ©Daniel Bystedt.

In recent years, reconstruction methods have been developed that can re-
cover strand-level hair geometry from images. However, these methods
recover a vast number of individual hair strands that are difficult to edit and
simulate. Many methods also rely on neural priors to infer non-visible inner
hair, which can result in poor inner hair structure for complex hairstyles,
such as curly hair. We propose an inverse hair grooming pipeline that trans-
forms the imperfect 3D strands from these reconstruction methods into
procedural hair grooms that consist of a small set of guide strands and hair
grooming operators, inspired by pipelines used by artists in popular 3D
modeling tools such as Blender and Houdini. We take a probabilistic view
of these hair grooms and design various optimization strategies and loss
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functions to optimize for the guide strands and operator parameters. Due to
the proceduralism, our resulting grooms can naturally represent challenging
hairstyles, have structurally sound inner hair, and are easily editable.
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1 Introduction

Recent advances in hair reconstruction have allowed us to accurately
recover hair strand-by-strand from a video sequence [Sklyarova
et al. 2023; Wu et al. 2024; Zakharov et al. 2024], enabling various
applications in fields such as visual effects, gaming, and virtual re-
ality. However, while these methods can reconstruct accurate hair
strands, the resulting tens to hundreds of thousands of individual
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strands are not intuitive to edit, limiting its usage in these down-
stream applications. Furthermore, hair grooms created by artists are
rarely designed strand-by-strand. Instead, it is common to construct
a small set of guide strands, which are instanced and interpolated
into dense strands, and apply procedural grooming operators to mod-
ify the hair to achieve the desired hairstyle (e.g., a “curl” operator
to make the hair curly). Guide hair and grooming operators are
also crucial for artistic control of hair simulation to achieve artists’
desired effects.

In this work, we present the first work on transforming unstruc-
tured 3D hair strand geometry obtained from hair reconstruction
methods into procedural hair grooms. Given a set of hair curves (Fig-
ure 1 (a)) and a set of procedural grooming operators, we propose
a pipeline to retrieve both the guide hair control vertices and the
procedural grooming operator parameters (Figure 1 (b)). Our proce-
dural hair is easy for an artist to edit to achieve different hairstyles
(Figure 1 (c) and (d)). Since the number of guide strands and groom-
ing operator parameters is small relative to the number of strands
in the target geometry, we focus on reconstructing accurate overall
hairstyles, rather than individual strand locations.

Designing optimization strategies to recover these guide strands
and operator parameters is non-trivial due to a fewmajor challenges:
1) Both the guide strands and operator parameters need to be op-
timized without assuming the other is known, even though there
is ambiguity between the two. For example, a curly hair groom
can be represented using curly guide strands, or a curl operator.
2) Hair grooming pipelines add random variations to individual
strands to ensure that not all instanced strands follow the same
shape. This, however, means that we cannot expect the strands in
the procedural groom to match the strands in the target exactly, and
so simple losses like a vertex-wise 𝐿2 loss are not suitable. Rather,
a loss that matches the overall hairstyle or distribution is needed.
3) Hair strands that are reconstructed from images often require
data-driven priors to infer inner hair that is not visible from any
view, and there are no guarantees these inner hairs are accurate. As
such, the method must be robust to the imperfect target geometry.
We introduce several contributions to address these challenges:

• We design a procedural hair grooming pipeline (Section 4) that
is both intuitive to edit and flexible enough to capture a wide
variety of hairstyles.

• We develop a probabilistic view on procedural hair grooms (Sec-
tion 5.1) to design loss functions that account for the random
per-strand variations.

• We design strategies and loss functions to initialize and optimize
for guide strands without assuming known grooming operator
parameters (Section 5.2, Section 5.3, Section 5.4), by assuming
guides are typically smooth and variations are added through
operators.

• We design loss functions to optimize for grooming operator pa-
rameters that change overall hairstyles (Section 5.5). We also
optimize for the random per-strand variations to better match
complex real hair grooms (Section 5.6).

• We show that the combination of these items allows our method
to handle imperfect target geometry, and ensure that our grooms
are structurally sound, even in nonvisible hair (Section 5.7).

We validate our optimization pipeline on both synthetic proce-
dural grooms (Section 7.2, Figure 7) and real hair reconstructions
(Section 7.3, Figure 8), on a wide variety of hairstyles, including
curly hair (Section 7.1, Table 1). Our method recovers procedural
grooms that are both easy to edit and have reasonable inner hair
strands, as shown by edits and simulations (Section 7.5, Figure 10).

2 Related Work

2.1 Procedural Modeling

Computer graphics has a long tradition of modeling objects
using procedural programs and coarse structures, from tex-
tures and shaders [Cook 1984; Perlin 1985], grammars for
shapes [Prusinkiewicz 1986], to character rigs [Baran and Popović
2007]. Our task is related to the task of inverse procedural modeling
(e.g., [Cascaval et al. 2022; Du et al. 2018; Hu et al. 2019; Talton
et al. 2011; Vanegas et al. 2012]) and automatic rigging [Baran and
Popović 2007; Xu et al. 2020], where we share the goal of infer-
ring the skeletal structure and retrieving the procedural program
parameters from unstructured input.

To our knowledge, our work is the first to reconstruct procedural
hair grooms from hair stands, although procedural grooming op-
erators are widely used in hair modeling and rendering [Bhokare
et al. 2024; Yuksel et al. 2009], and even in movie production [Hasen-
bring and Karlsson 2021; Ogunseitan 2022]. Unlike some works in
inverse procedural modeling, we assume the types of our groom-
ing operators are known, and we aim to infer the skeletal guide
strands and the groom operators parameters from hair strands. The
unique challenge in our setting is to design loss functions that can
match the distributions of our procedural hair grooms and target
hair strands. Due to the scarcity of training data for procedural hair
grooms, we do not consider data-driven methods [Xu et al. 2020],
but the combination with them could be exciting future work.

2.2 Hair reconstruction and generation

Our method is driven by the recent advances in hair reconstruction
and generation. Given a video walkthrough of a person’s head
or even just a single image, we now have a plethora of methods
capable of reconstructing 3D hair strands. Furthermore, there are
data-driven generative models that can synthesize hair from random
seeds, optionally guided by input text.

A large class of methods takes multiple views of a static subject,
with uncontrolled lighting, and directly fits hair strands to the ob-
servation without collecting a large set of hair examples [Hu et al.
2014; Jakob et al. 2009; Kong and Nakajima 1998; Luo et al. 2012,
2013; Maeda et al. 2023; Nam et al. 2019; Takimoto et al. 2024; Wei
et al. 2005; Zhou et al. 2024]. Some other methods collect a hair
database to act as a prior for multi-view reconstruction [Liang et al.
2018; Rosu et al. 2022; Sklyarova et al. 2023; Wu et al. 2024; Zhang
et al. 2017, 2018]. Some of these data-driven methods can even be
used for generating hair from a single image input [Chai et al. 2016;
Hu et al. 2015; Saito et al. 2018; Wu et al. 2022; Zhang and Zheng
2019; Zheng et al. 2023; Zhou et al. 2018], sometimes along with
user input strokes for specifying the desired hairstyle [Chai et al.
2015, 2013]. Another class of methods rely on controlled lighting
to get very high-quality output [Grabli et al. 2002; Paris et al. 2004,
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Fig. 2. Pipelines. (a) Our hair grooming pipeline takes a sparse set of guide strands, instances them to dense strands, and then procedurally deforms them

using grooming operators to generate the hair groom. (b) To optimize the various parameters in the hair grooming pipeline, we initialize the guide strands using

the target strands. We optimize the weights of the instancing operation and the shape of the guide strands. We then optimize both the operator parameters,

which control the global hairstyle, as well as operator random numbers, to refine individual strands. Groom adapted from Hair Styles ©Daniel Bystedt.

2008; Sun et al. 2021]. Some methods directly synthesize hair by
training a generative model [Chen et al. 2024; Zhou et al. 2023] or
via examples [Wang et al. 2009; Weng et al. 2013].

Some of the methods above also reconstruct guide/coarse strands
of the hair along the way [Chen et al. 2024; He et al. 2024; Luo et al.
2024; Takimoto et al. 2024; Zakharov et al. 2024]. However, these
guide strands do not account for the procedural structure of the
groom operators.
Our method is in principle agnostic to the type of method used

for reconstruction and generation.

3 Overview

Problem setup. Our goal is to transform unstructured 3D hair
strands (the target) into editable hair grooms. As such, we aim
to recover a set of guide strands, as well as procedural grooming
operators that deform the strands using a set of intuitive parameters.
We represent the strands in a hair groom as a collection of 𝑛

polylines x = {x1, . . . x𝑛}, each with𝑚 vertices: x𝑖 = {𝑥𝑖,1, . . . , 𝑥𝑖,𝑚},
where 𝑛 and 𝑚 are determined by the target strands. In order to
edit the groom more easily, we recover a sparse set of 𝑛𝑔 (500 ≤
𝑛𝑔 ≤ 3000 in our work depending on the complexity of the target)
guide strands g, which are themselves strands with𝑚 vertices. The
strands in the groom are then instanced by interpolating the guides,
through an instancing operation: x = instance(g). The procedural
grooming operators are parametric functions 𝑃 (𝑧 )𝜽 that deform the
strands: x(𝑧+1) = 𝑃 (𝑧 )𝜽 (x(𝑧 ) ). An example is a bend operator, that is
parameterized by a bending angle. Our procedural hair groom can
therefore be described as:

x = P𝜽 (instance(g)), (1)

where P𝜽 are the grooming operators applied to the instanced
strands with parameters 𝜽 . P𝜽 can be written as composition of
zero or more individual grooming operators 𝑃 (𝑧 )

𝜃𝑧
◦ · · · ◦ 𝑃 (1)

𝜃1
. This

forms a chain of operators. Production hair grooming tools often
allow for highly expressive graphs of operators, but we implement

a chain for simplicity. Figure 2 (a) illustrates this grooming pipeline,
and we discuss it more in detail in Section 4.
The problem of recovering procedural hair grooms can then be

posed as an optimization problem. Given target strands x̂, find the
best set of guides g and grooming operator parameters 𝜽 by solving
the optimization problem:

arg min
g,𝜽

L(x(g, 𝜽 ), x̂), (2)

where L is a loss function. We denote target variables with ·̂ to
distinguish them from their estimated counterparts. In this work,
we assume the set of operators is known, and only their parameters
are optimized. We leave optimizing the topology of operators to
future work. A major challenge of this work is the design of the loss
L and how to optimize it.

Optimization Pipeline. Figure 2 (b) illustrates the overview of our
optimization pipeline. We design dedicated strategies for the vari-
ous parameters in the grooming pipeline and optimize each in turn.
Our strategies are based off a probabilistic interpretation of the
procedural hair grooms, discussed in Section 5.1. First, our method
initializes guide strands by clustering and smoothing the target
strands (Section 5.2). We then optimize the weights of the instancing
operator to improve guide interpolation (Section 5.3). After, we opti-
mize the guide strands without assuming correct grooming operator
parameters (Section 5.4). Given the optimized guides, we optimize
for the operator parameters that control the global hairstyle of the
groom (Section 5.5), and per-strand random numbers to further
refine the appearance of the groom (Section 5.6).

4 Hair Grooming Pipeline

Inspired by existing workflows in 3D modeling software, such as
Blender [Blender-Online-Community 2018] and Houdini, we design
a hair grooming pipeline that starts with guide strands, which are
instanced to dense strands (Section 4.1). These instanced strands are
further deformed by grooming operators (Section 4.2) to generate
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the full hair groom. Users can edit these grooms by modifying the
guide strands and changing operator parameters.

4.1 Guides and Instancing

Since the average person can have a number of hair strands on the
order of 105, to be able to design hair grooms more easily, artists
frequently instead manipulate a sparse set of guide strands [Ward
et al. 2007; Watanabe and Suenaga 1991], which reduce the number
of strands by several orders of magnitude (typically in the hundreds,
up to a few thousand). The final dense strands are generated by
instancing the guide strands, using hair root positions and inter-
polating nearby guides. Mathematically, to generate strands x𝑖 , we
take guides g𝑖 and hair root positions 𝑥𝑖,1 and interpolate them as:

𝑔𝑖, 𝑗 =

∑
𝑖′∈N(x𝑖 ) 𝑤 (𝑥𝑖,1, 𝑔𝑖′,1)𝑔𝑖′, 𝑗∑
𝑖′∈N(x𝑖 ) 𝑤 (𝑥𝑖,1, 𝑔𝑖′,1)

𝑥𝑖, 𝑗 = 𝑥𝑖,1 + 𝑔𝑖, 𝑗 − 𝑔𝑖,1, (3)

where N(x𝑖 ) is the set of 𝑘 closest guides to x𝑖 , and
𝑤 weights the influence of each guide for each strand.

x𝑖

𝑁 (x𝑖 )

g𝑖′

g𝑖′+1 By default, we choose a weight based on the distance
of the root to the guide root in UV space:𝑤 (𝑥, 𝑔) =
exp

(
− | |𝑇 (𝑥 )−𝑇 (𝑔) | |2/𝜎2

instance
)
where𝑇 : R3 → [0, 1]2

is the UV-mapping of hair roots to texture coordi-
nates on the scalp, as often computed in reconstruc-
tion work [Rosu et al. 2022], and 𝜎instance controls
the size of the region of influence of each guide. How-

ever, for complex hairstyles seen in real hair strands, we can also
opt to instead optimize for𝑤 , which we discuss in Section 5.3.

4.2 Operators

Figure 3 shows our grooming operators, each of which deforms
strands procedurally. Some operators, particularly clump, bend, and
curl, perform their deformation to follow an operator guide strand.
In this section, we first discuss properties common to all operators,
then describe each operator.

Operator guides. Some of the operators, namely clump, bend, and
curl, deform the instanced strands around a guide strand to form
their shape. However, instead of reusing the same guides used to
instance them, which we refer to as simply the guide strands, we
use a different set, which we call the operator guides gop. We choose
the operator guides by sampling a fraction of the guide strands:
gop ⊆ g. In this way, the number of operator guides is not tightly
coupled with the number of guide strands: the former is chosen
based on the hairstyle (e.g., the number of curls in the groom),
while the latter controls the resolution of the full dense groom. Each
instanced strand is assigned only a single operator guide, as opposed
to multiple guide strands in the guide interpolation. In this way, for
the curl operator for example, all strands assigned to a particular
operator guide will form a single curl around it. See Section 5.2 for
more on operator guide sampling and assignment, and Figure 18
and Figure 19 for the effect of guides and operator guides.

Random parameters. Many of the operators not only have param-
eters controlling the deformation of all strands across the groom,

(a) Base

(d) Bend

(b) Scale (c) Clump

(e) Curl (f) Frizz(

Fig. 3. Grooming Operators. (a) Given a base hair groom, (b)-(f) shows

the effect of each individual operator. For each, a single red operator guide

hair is shown in the middle, with two green instanced strands deformed

by the operator. The render shows the overall hairstyle change due to each

operator. Our pipeline combines operators to produce different grooms.

Groom adapted from Hair Styles ©Daniel Bystedt.

but also random parameters which apply a random amount of de-
formation to each individual strand. For example, the curl operator
has a curl frequency parameter 𝜃 and a random curl frequency pa-
rameter 𝜃rand so that the total frequency in a particular strand is
𝜃 + 𝜃rand𝑢, where 𝑢 is a random number. This provides a random
variation to different strands to better model variation in real hair.
See Appendix A for more details about the random numbers.

Types. We provide full operator formulations in Appendix A.
The scale operator (Figure 3 (b)) applies a random scaling to each

instanced strand, parameterized by the random scale factor.
The clump operator (Figure 3 (c)) reduces the distance of each

instanced strand to the operator guide towards the tip to form a
hair clump shape. It blends the strand to the operator guide using a
profile of the form exp (−𝑎𝑥) where 𝑎 controls the profile shape.
The bend operator (Figure 3 (d)) bends each strand around a

random axis perpendicular to the root direction of the operator
guide, by an angle which increases linearly from root to tip. It
is parameterized by the angle and bend start, which controls the
distance along the strand to start the bend.
The curl operator (Figure 3 (e)) curls each strand around its

operator guide. It is parameterized by the curl radius, frequency, a
random frequency, which varies the frequency per curl, and curl
start, which controls the distance along the strand to start the curl.

The frizz operator (Figure 3 (f)) applies Perlin noise [Perlin 1985]
to each strand, to add noise to the groom. It is parameterized by the
noise frequency and amplitude.
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(b) Target (c) Initial (d) Optimized
x1 x2 x1 x2x̂1 x̂2

(a) Rand. Rot.

Fig. 4. Random Parameters and Naïve optimization. (a) The bend operator

bends strands (green) by an angle with a random rotation around an axis

specified by the operator guide strand (red). Note that if we average the

strands of all possible rotations, the resulting strand (yellow) is similar in

shape as the guide. (c) The initial state has the correct bend angle and guide

strand shape as the target in (b). However, due to the different axis rotations,

strands x1, x2 are different from x̂1, x̂2. (d) Naïvely minimizing the difference

between x1, x̂1 and x2, x̂2 incorrectly bends the guide strand.

5 Optimization Strategies

To optimize the pipeline discussed in Section 4, we optimize different
components in turn. Leveraging a probabilistic view on procedural
hair grooms (Section 5.1), we initialize the guide strands (Section 5.2),
optimize the instancing weights (Section 5.3), and then optimize
the guide strands (Section 5.4). We further use the probabilistic
view to optimize operator parameters (Section 5.5). Finally, to refine
the groom to better match the target strands, we optimize the per-
strand random numbers u in the operators (Section 5.6) as discussed
in Section 4.2. We discuss structural integrity considerations when
optimizing real hair grooms in Section 5.7. We provide details of the
optimization including hyperparameters in Section 6.

5.1 A Probabilistic View on Procedural Hair Grooms

A core challenge in optimizing procedural hair grooms is that while
the model contains a significantly smaller number of parameters
for ease of editability, it typically cannot perfectly represent each
individual strand in the target. Instead, the guide strands model
the overall shape of the groom, while the operators add to the
overall style and variation. Note that individual strand variation is
added through the random operator parameters and their random
numbers, and so a slightly different groom is generated depending
on the random seed. As such, an optimization method needs to take
into account a certain level of variance when comparing two strands:
a strand at a given root location in the target does not always have
the same shape as the strand at the same location in the procedural
groom (See Figure 4). Rather, a local collection of strands in the
model should, on average, look similar to the collection of strands
in the target.

Thus, we turn to a probabilistic view on procedural hair grooms:
given a set of random numbers u, the grooming pipeline generates a
hair groom, which is a realization from a distribution of hair grooms
described by the guide strands and operator parameters. Using this,
we rewrite Equation (1) in a per-strand form:

x𝑖 ∼ P𝜽 (g, 𝑟𝑖 ), (4)

where 𝑟𝑖 = 𝑥𝑖,1 is the root location, and the instancing operation is
hidden inside the set of operators P𝜽 . In the next few sections, we
use the idea that all strands, including target strands, can be seen as
samples from a distribution P𝜽 to design various loss functions.

5.2 Guide Initialization

Guide clustering and smoothing. We manually select the number
of guides 𝑛𝑔 , and set the root locations from the target strands 𝑟𝑖 =
𝑥𝑖,1. Due to the variance in comparing strands, naïvely optimizing
for the guides using, e.g., a vertex-wise L2 loss,

Lx =
1
𝑛𝑚

𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

(𝑥𝑖, 𝑗 − 𝑥𝑖, 𝑗 )2, (5)

frequently causes variation to be baked into the guides, rather than
the operators (Figure 4). Instead, we observe that the guide strands
are similar to the mean of the distribution P𝜽 : high-frequency varia-
tions are added using the operators, and the guides are similar to
an average of all possible realizations of the strands (Figure 4 (a)).
Thus, since strands are typically locally spatially similar besides the
random variations, averaging a bundle of strands can be a guess
for their guide strand. Therefore, we initialize the guide strands
by taking the full set of 𝑛 target strands, and applying K-means
clustering with 𝑛𝑔 clusters. The cluster centroids then form a sparse
set of strands. However, these are not yet guide strands as they can
still have, for example, a curl shape, and so we further smooth the
strands to form our guide strands by solving the heat equation on
the strands. In particular, given a strand x𝑖 , to smooth to a strand
x̃𝑖 , we form the discrete Laplacian 𝐿:

[𝐿]𝑖, 𝑗 =


1, 𝑖 = 𝑗 = 1 or 𝑖 = 𝑗 =𝑚

2, 𝑖 = 𝑗 and 𝑖, 𝑗 ≠ 1, 𝑖, 𝑗 ≠𝑚
−1, 𝑗 = 𝑖 + 1 or 𝑗 = 𝑖 − 1
0, otherwise,

(6)

and iteratively solve (𝐼 + 𝜆smooth𝐿)x
(𝑡+1)
𝑖

= x(𝑡 )
𝑖

for 𝑁smooth
steps, with fixed boundary conditions 𝑥𝑖, 𝑗 ′ = 𝑥𝑖, 𝑗 ′ , for 𝑗 ′ =

{1, . . . ,𝑚fixed} ∪ {𝑚}. In this way, we fix the first few vertices of the
hair growing out of the scalp up to vertex𝑚fixed to prevent over-
flattening at the top of the head, and the tip vertex to ensure the
length of the strand does not shrink significantly during smoothing.
This is similar to the K-medoids clustering and discrete cosine

transform (DCT) decomposition used in concurrent work by Chen
et al. [2024], with the difference that we do not need the guide
strands to be a subset of the target strands and directly solving the
heat equation allows for more flexible boundary conditions.

Operator guide selection and assignment. To select the operator
guides gop ⊆ g, we select them by applying K-medoids clustering on
g (where 𝑛𝑔op is also selected manually based on the groom). Note
that we use K-medoids clustering here, as we choose the operator
guides to be a subset of the guides (this does not have to be the case
in general), and so we need the resulting medoids to be from the
set of guides. To assign an operator guide to each instanced strand,
by default we choose the closest operator guide based on root UV
distance. This assignment may occasionally be problematic near
hair-parting regions, where an instanced strand’s blended guide ḡ𝑖
and operator guide gop𝑖 are on different sides of the parting. This
can cause the instanced strand to penetrate the head. To fix this, we
reassign the instanced strand the next closest operator guide that
does not cause head penetration.
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5.3 Instancing optimization

We find that in real hair grooms, distance-based interpolation meth-
ods are insufficient, as root distance is a poormetric of hair similarity,
which is in line with previous work [Zhou et al. 2023]. Target strands
that are not well interpolated using a distance-based interpolation
make it difficult to optimize for the guide strands discussed in the
next section. Thus, we optimize the per-strand interpolation weights
𝑤 in Equation (3) with a vertex-wise L2 loss (Equation (5)), i.e.
we find arg min𝑤𝑖,𝑖′ Lx, where𝑤 (𝑥𝑖,1, 𝑔𝑖′,1) = 𝑤𝑖,𝑖′ , using gradient-
based optimization. For this stage only, we use the non-smoothed
cluster centroids as the guide strands with no grooming operators
to optimize only for instancing. This is done as at this point, we
do not know what the operator parameters should be, and so we
let the guide strands fully describe the shape of the groom. With
optimized weights, each strand can choose the weighting of local
neighboring guides to best fit the target shape, without affecting
the editability of the strands.

5.4 Guide Optimization

Loss function. To further refine the shape of the guides, we aim
to design a loss that is robust to individual strand variation. We
start by assuming the target can be perfectly represented using a
procedural model: x̂𝑖 ∼ P𝜽 (ĝ, 𝑟𝑖 ). In this case, using the idea that
the guides are similar to the mean of P𝜃 , we can use a loss that
minimizes expectations:

Lg =
1
𝑛

𝑛∑︁
𝑖=1

������Eu𝑖 [P𝜽 (g, 𝑟𝑖 )] − Eû𝑖 [P𝜽 (ĝ, 𝑟𝑖 )]
������2 , (7)

where the expectation is taken over all random numbers u𝑖 for each
strand 𝑖 . By taking the expectation of the strand, we aim to remove
the random strand variations caused by the operators, revealing
the overall shape due to the guides. To minimize this loss, we first
assume x̄𝑖 = Eu𝑖 [P𝜽 (g, 𝑟𝑖 )] can be computed. This can either be
done via Monte Carlo sampling with high sample count, or we find
in most cases, well-approximated by operators with a known set of
parameters. For example, the expectation of the bend operator for
any angle is simply the identity operation. This is the case for most
of our operators besides clump. We can then use a gradient-based
approach and simplify the gradient of L𝑔 to be:

𝜕Lg

𝜕g
=

2
𝑛

𝑛∑︁
𝑖=1

(Eu𝑖 [P𝜽 (g, 𝑟𝑖 )] − Eû𝑖 [P𝜽 (ĝ, 𝑟𝑖 )])
𝜕

𝜕g
Eu𝑖 [P𝜽 (g, 𝑟𝑖 )]

=
2
𝑛

𝑛∑︁
𝑖=1

(x̄𝑖 − Eû𝑖 [P𝜽 (ĝ, 𝑟𝑖 )])
𝜕

𝜕g
x̄𝑖

=
2
𝑛

𝑛∑︁
𝑖=1

Eû𝑖

[
(x̄𝑖 − P𝜽 (ĝ, 𝑟𝑖 ))

𝜕

𝜕g
x̄𝑖

]
, (8)

by linearity of expectation. In practice, the target is not a procedural
model, and so we only have access to a single realization x̂𝑖 ∼
P𝜽 (ĝ, 𝑟𝑖 ). Thus, we cannot compute Equation (8) as the expectation
cannot be computed. If we instead only compute the gradient using
the single realization, the result tends to be noisy and cause variation
to be baked into the guide strands. To avoid this, we observe that the

guide strands tend to be smooth across the scalp, i.e. neighboring
guides typically do not differ significantly. We can therefore use the
single realization and apply a filtering operation D across the guide
gradients:

𝜕Lg

𝜕g
≈ 2
𝑛
D

(
𝑛∑︁
𝑖=1

(x̄𝑖 − x̂𝑖 )
𝜕

𝜕g
x̄𝑖

)
, (9)

where D is a filtering operation across the gradients of different
guide strands. In particular, we use mesh bilateral gradient filter-
ing [Chang et al. 2024] as D to optimize towards smooth guides.
This is done by triangulating [Barber et al. 1996] the guide roots in
UV space𝑇 (𝑔𝑖,1) to obtain a connectivity for the guides. We use the
guide root directions 𝑔𝑖,2−𝑔𝑖,1

| |𝑔𝑖,2−𝑔𝑖,1 | | for the bilateral data term.

Parameterization. To ensure smoothness along each guide strand,
in addition to gradient filtering, we use the curvature parameteri-
zation by Crane et al. [2013] instead of directly optimizing vertex
positions. They show that parameterizing based on curvature mini-
mizes a fairing/bending energy 1

2
∫
𝜿2 d𝑙 , where 𝜿 is the curvature,

leading to more robust and higher quality curve evolution. In partic-
ular, this parameterization includes the root position 𝑥𝑖,1 (which we
do not optimize), root angles 𝜙𝑖,1 (in spherical coordinates), segment
lengths 𝑙𝑖, 𝑗 , and curvatures 𝜅𝑖, 𝑗 . We then integrate curvature to get
segment directions, and integrate directions to get vertex positions:

𝜙𝑖, 𝑗 = 𝜙𝑖,1 +
𝑗−1∑︁
𝑗 ′=1

1
2 (𝑙𝑖, 𝑗

′+1 + 𝑙𝑖, 𝑗 ′ )𝜅𝑖, 𝑗 ′

𝑥𝑖, 𝑗 = 𝑥𝑖,1 +
𝑗−1∑︁
𝑗 ′=1

𝑙𝑖, 𝑗 ′𝑑𝑖, 𝑗 ′ (𝜙𝑖, 𝑗 ′ ), (10)

where 𝑑𝑖, 𝑗 is the segment direction in Cartesian coordinates.

5.5 Operator Parameter Optimization

Unlike guides, each of which modify the shape of strands in a lo-
cal neighborhood, operators globally modify the groom style. As
a result, instead of having only the neighborhood of strands to
determine guide shape, we can use all strands simultaneously to
determine the operator parameters. If we view the estimated strands
x as 𝑛 samples from the distribution P𝜽 (note this is not strictly a
distribution, as each strand’s x𝑖 depends on root location 𝑟𝑖 , but
we find this is fine in practice) and the target strands x̂ as 𝑛 sam-
ples from P𝜽 , then the task becomes finding parameters 𝜽 to best
match two sets of samples from two distributions. We categorize the
operators based on how they affect the distribution: strand shape
operators largely modify the shape of each strand, while strand
correlation operators modify the correlation across strands. The
two are optimized separately with different strategies.

Strand shape operators. The bend, curl, and frizz operators modify
the shape along each strand. Like for the guides, optimizing using
a vertex-wise loss is insufficient due to the variance inherent to
the comparison between two strands as discussed previously. In-
stead, a better approach is to use a loss that attempts to match the
distributions P𝜽 and P𝜽 given their samples. In particular, instead
of comparing strands directly, we compare them using the Sliced
Wasserstein Distance [Rabin et al. 2012], based in optimal transport
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theory for comparing distributions, which has been used for various
tasks such as color transfer and texture synthesis [Heitz et al. 2021;
Pitie et al. 2005]. Optimal transport has also been used to compute
strand correspondences for example-based hair geometry interpola-
tion [Weng et al. 2013]. Following the analysis of Heitz et al. [2021],
we use a Sliced Wasserstein Loss of the form:

SW
(
f, f̂

)
=

1
𝑠

𝑠∑︁
𝑘=1

������sort({⟨v𝑘 , f𝑖 ⟩}) − sort({⟨v𝑘 , f̂𝑖 ⟩})
������2 , (11)

x𝑖

x̂𝑖

⟨v𝑘 , f𝑖 ⟩

⟨v𝑘 , f̂𝑖 ⟩

Fig. 5. Sliced Wasserstein

Loss. To compare two sets

of hair strands (x𝑖 , x̂𝑖 ) with-
out known strand correspon-

dences, each strand’s fea-

tures (f𝑖 , f̂𝑖 ) are projected

to scalars (⟨v𝑘 , f𝑖 ⟩, ⟨v𝑘 , f̂𝑖 ⟩).
Both sets are sorted and

compared using an L2 loss.

where f = ℎ(x) are features computed
from the strands, 𝑠 = dim f𝑖 and v𝑘 are
random vectors. For each set of𝑛 strand
features, the loss first takes a slice of
each 𝑠-dimensional feature, by project-
ing it to a scalar through a dot product
with v𝑘 , then sorts the set of𝑛 projected
scalars. A distance is then computed be-
tween the two sets of sorted projections
using the L2 norm. We refer readers
to the work by Heitz et al. [2021] for
more information. Intuitively, this loss
implicitly computes a correspondence
between the features via the projection
and sorting in order to match the distri-
butions (See Figure 5).
To optimize a variety of operators,

we use the combination of a frequency
loss and a strand segment loss:

L𝜽 = SW
(��F {e𝑖 }

��, ��F {ê𝑖 }
��) + 𝜆𝑒SW (e𝑖 , ê𝑖 ) , (12)

where e𝑖 = {𝑒𝑖,1, . . . , 𝑒𝑖,𝑚−1}, 𝑒𝑖, 𝑗 = 𝑥𝑖, 𝑗+1 −𝑥𝑖, 𝑗 are strand segments,
and |F | is the absolute value of the 1D Fourier transform computed
independently for each coordinate, i.e. |F {e𝑖 }| =

{��F {e𝑐
𝑖
}
��}, where

e𝑐
𝑖
= {𝑒𝑐

𝑖,1, . . . , 𝑒
𝑐
𝑖,𝑚−1}, for 𝑐 = {x, y, z}. Intuitively, the second term

in the loss measures the global shape of each strand, while the first
term transforms strands to the frequency domain to better capture
periodic shapes like frizz and curl.

𝜓 (𝑦𝑎, 𝑦𝑏 )

𝜓clump (x𝑎, x𝑏 )

Fig. 6. DPP Loss. DPP theory

enables quantifying point

clustering through pairwise

similarities 𝜓 (𝑦𝑎, 𝑦𝑏 ) . To

measure hair clumpiness, we

define a 𝜓
clump

based on

the distance between strands

from root to tip.

Strand correlation operators. The
scale and clump operators affect
the correlation across strands: the
scale operator randomly scales each
strand so that neighboring strands
have different lengths, while the
clump operator pushes neighboring
strands together around the guide.
To measure strand correlations, we
turn to Determinantal Point Processes
(DPP) [Hough et al. 2006; Kulesza 2012;
Macchi 1975], which characterize a
set of points from a DPP using the
determinant of a positive semidefinite
kernel 𝐾 . We omit the formal math of
DPPs for brevity and refer interested
readers to the introductions provided
by Hough et al. [2006] and Kulesza

[2012]. Intuitively, given a set of points y = {𝑦1, . . . 𝑦𝑛}, if the
entries [𝐾]𝑎,𝑏 = 𝜓 (𝑦𝑎, 𝑦𝑏 ) measure a similarity between 𝑦𝑎 and 𝑦𝑏 ,
then det(𝐾) can be used to measure the correlation between the
points in y: the determinant is large when points are distributed far
apart and is small when points are clumped together. Thus, we can
use this to define a loss:

DPPL𝜓 (x, x̂) = (log(det[𝜓 (x𝑎, x𝑏 )]) − log(det[𝜓 (x̂𝑎, x̂𝑏 )]))2 ,
(13)

where𝜓 is a suitable measure of similarity between strands, and log
is used for robustness against numerical precision issues. For the
scale operator, we compare strand lengths:

𝜓scale (x𝑎, x𝑏 ) = exp(−(𝑙𝑎−𝑙𝑏 )2/𝜎scale) (14)

𝑙𝑎 =

𝑚−1∑︁
𝑗=1

����𝑥𝑎,𝑗+1 − 𝑥𝑎,𝑗
���� , (15)

while for the clump operator, we compare a type of relative distance
between strand vertices:

𝜓clump (x𝑎, x𝑏 ) = exp(−CD(x𝑎,x𝑏 )/𝜎clump) (16)

CD(x𝑎, x𝑏 ) =
1
𝑚

𝑚∑︁
𝑗=1

����𝑥𝑎,𝑗 − 𝑥𝑏,𝑗 ��������𝑥𝑎,1 − 𝑥𝑏,1���� , (17)

where CD decreases as strands meet towards the tip (See Figure 6).
Computing this loss exactly is prohibitively expensive, as it re-

quires forming 𝐾 which is𝑂 (𝑛2) in the number of strands, where 𝑛
can be on the order of 105. Although it is possible to form a sparse
matrix by setting elements in the matrix to 0 when strands have low
similarities, we instead take the simpler approach of sampling a sub-
set of strands 𝐵𝐾 ⊆ {1, . . . , 𝑛}. To sample this subset, we first select
a random strand x𝑖 , and then select the nearest |𝐵𝐾 | − 1 strands in
UV space. We then have |𝐵𝐾 | strands in a local region of the head,
which we use to compute 𝐾 . Our losses are then

L𝜃scale = DPPL𝜓scale

(
x𝐵𝐾 , x̂𝐵𝐾

)
and L𝜃clump = DPPL𝜓clump

(
x𝐵𝐾 , x̂𝐵𝐾

)
.

(18)

Since we have losses specific to scale and clump, we alternate opti-
mizing them.

5.6 Operator Random Number Optimization

While procedural hair grooming enables editability, a downside of
the methods in the previous sections is that only the global charac-
teristics of the groom are captured; local hair orientations may not
be captured. Note that this is not specific to hair grooming, match-
ing local features is a problem for other procedural modeling tasks
(e.g., [Hu et al. 2019; Talton et al. 2011]) as well. To ameliorate this
and improve the visual appearance of our optimized groom com-
pared to the target, we propose to optimize the per-strand random
numbers u𝑖 . Similar to the previous section, we use a combination
of a frequency loss, direction loss, and this time a length loss as well
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for the scale operator:

L𝜽rand =
1
𝑛

𝑛∑︁
𝑖=1

��������F {d𝑖 }
�� − ��F {d̂𝑖 }

��������2
+
𝜆𝑑rand

𝑛

𝑛∑︁
𝑖=1

1 − ⟨⟨d𝑖 , d̂𝑖 ⟩⟩ +
𝜆𝑙rand

𝑛

𝑛∑︁
𝑖=1

(𝑙𝑖 − 𝑙𝑖 )2, (19)

where ⟨⟨·, ·⟩⟩ computes the dot product between each element of d𝑖
and d̂𝑖 , and 𝑑𝑖, 𝑗 =

𝑒𝑖,𝑗

| |𝑒𝑖,𝑗 | | . This time we use an element-wise loss in
order to optimize local features.

Using gradient-based optimization with this loss often gets stuck
in local minima, as the procedural operators are typically very non-
linear functions. As such, to help escape local minima, we add noise
to the gradients during the optimization step:

u(𝑡+1)
𝑖

= u(𝑡 )
𝑖

− 𝛼
(
𝜕Lrand
𝜕u𝑖

+ 𝜎 (𝑡 )
𝑖
𝜀

)
, (20)

where 𝑡 is the iteration number, 𝛼 is the learning rate, 𝜎 (𝑡 )
𝑖

are
parameter and iteration dependent noise scaling factors, and each
𝜀 ∼ N(0, 1), the standard normal distribution. To automatically
choose a 𝜎 (𝑡 )

𝑖
which is adaptive to the scale of the parameter gra-

dients across a wide range of different parameters and grooms, we
scale it according to the mean absolute gradient 1

𝑛

∑𝑛
𝑖=1

��� 𝜕Lrand
𝜕u𝑖

���. To
aid in jumping out of local minima, we additionally scale it by a fac-
tor of 1.5, which linearly decays to 0.5 at the end of the optimization
after 𝑁rand iterations. Altogether, we set:

𝜎
(𝑡 )
𝑖

=

(
1.5 − 𝑡 − 1

𝑁rand − 1

)
1
𝑛

𝑛∑︁
𝑖=1

���� 𝜕Lrand
𝜕u𝑖

���� , (21)

for 𝑡 = 1, . . . , 𝑁rand. Adding noise to the gradients has shown similar
benefits in recent inverse rendering tasks [Fischer and Ritschel 2023;
Kheradmand et al. 2024].

5.7 Structural Integrity

A challenge of unstructured strands obtained from reconstruction
work (e.g., [Sklyarova et al. 2023; Wu et al. 2024]) is that they often
have little structural guarantees. For example, the inner strands that
are not visible to the camera need to be inferred from data-driven
priors, which can often be lacking for complex grooms like curly
hair. As a result, inner hair which should be curly may end up being
too short or too straight. On the other hand, our instancing and
operators guarantee some structure: all strands that are part of a
curl are guaranteed to be curly. Furthermore, the gradient filtering
and curvature parameterization make it unlikely for the strands to
have sharp bends or change drastically spatially.

When the target strands x̂ have poor structure (e.g., short, straight
strands in a curly groom), using them in the optimization can af-
fect the recovered parameters. For example, straight strands in a
curly groom will bias the curl operator radius and frequency to
lower values. To address this, we remove these flawed strands from
the optimization. In particular, if we denote 𝐵flawed ⊂ {1, . . . , 𝑛}
as indices of the flawed strands, then the strands we use during
optimization are xopt = x \ x𝐵flawed . Then, our loss functions become
L(xopt, x̂opt). We choose x𝐵flawed to be the strands that are not visi-
ble to the camera. We select these by taking the cameras used by

the original reconstruction method, rasterizing the target strands,
and removing any that are not visible from any view.

Note that even if strand x̂𝑖 is not used in the optimization, strand
x𝑖 can still be optimized due to our grooming pipeline. Neighboring
target strands x̂𝑖′ that are used in the optimization will contribute
gradients to x𝑖′ , which will be propagated to the guides, which are
then instanced to x𝑖 . Even when no strands for a particular guide
strand receive gradients, the gradient filtering ensures that the guide
is still optimized to smoothly follow neighboring guides.

6 Implementation

We implement our system using PyTorch. We use Warp [Macklin
2022] to compute various distance and closest point queries from
the hair to the head mesh and Faiss [Douze et al. 2024; Johnson
et al. 2019] as well as Scikit-Learn for various clustering and nearest
neighbor queries. The time it takes our method to optimize a single
groom depends on the number of strands and operators. We list the
times for each example run on a desktop with an i9-14900K CPU
and an RTX 4090 GPU in Table 1.

Preprocessing Details. For synthetic data, we fit a FLAME model
to the head mesh as described by Li et al. [2017]. We optimize the
FLAME model shape and pose parameters by minimizing the L2
distance between a set of 51 facial landmarks, manually placed on
the template mesh and the head mesh, and the L2 distance between
the vertices of the template mesh and their closest point on the
head surface. With the FLAME head mesh, we can then extract the
scalp region from the parametric mesh in Blender, and generate
a UV map, which is used to compute hair root distances and root
triangulations. For the real examples from MonoHair and Gaussian
Haircut, we directly use their fitted FLAME parametric head model.
We also use their fitted camera parameters to extract the non-visible
set of hair strands, as discussed in Section 5.7.

Initialization Details. We list the number of guides𝑛𝑔 and operator
guides 𝑛𝑔op we choose for each example in Table 1. For the guide
smoothing, we set 𝜆smooth = 1 and 𝑁smooth = 80 by default and
𝑚fixed = ⌊0.05𝑚⌋. To initialize the grooming operators, we manually
select a set of operators based on the hairstyle of the subject, and
choose initial parameters within common ranges.

Optimization Details. For optimization, we follow the pipeline as
discussed in Section 3.

We optimize the instancing weights for 2000 iterations with Adam
with a learning rate of 3 · 101 and default PyTorch settings.

We optimize for the guides for 3000 iterations. We use the opti-
mizer provided by [Chang et al. 2024], with learning rates of 5 · 10−2

for 𝜅𝑖, 𝑗 , 1.5 · 10−3 for 𝑙𝑖, 𝑗 , and 5 · 10−2 for 𝜙𝑖,1. We set 𝜆 = 10 and
𝜎𝑑 = 0.3. The remaining parameters follow their defaults.

For the operators, we alternate between optimizing the 3 different
losses for: the strand shape operators, the scale operator, and the
clump operator, each for 200 iterations at a time. If a groom does
not have the particular operator, we skip optimizing it. We optimize
each for a total of 3000 iterations, up to a total of 9000 iterations
for the operator optimization stage. For all, we use the Adam op-
timizer [Kingma and Ba 2015] with a learning rate of 1 · 10−2 and
default PyTorch settings. We set 𝜆e = 4 ·102. For the DPP loss, we set
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Table 1. Example Details.We list the local taxonomic labels [Meishvili et al. 2024], strand information, and optimization time for our examples. We cover

most of the variations in each label, showcasing the diversity of hairstyles that our method supports.

Examples Hair Type Gathered Direction Length Layering 𝑛 𝑚 𝑛𝑔 𝑛𝑔op Opt. Time (min)
Figure 7 (a) wavy none down chin none 28022 101 500 500 10
Figure 7 (b) curly behind-ear down shoulder none 13991 101 500 500 3
Figure 7 (c) straight none up short/shaved fade 59821 101 500 500 30
Figure 7 (d) straight none out ear none 28022 101 500 500 6
Figure 7 (e) straight none down shoulder none 13991 101 500 500 1
Figure 7 (f) coil none out very short none 21325 101 3000 3000 7
Figure 7 (g) straight none down shoulder none 13991 101 500 500 2
Figure 8 (a) wavy behind-ear down chin none 166280 100 500 125 32
Figure 8 (b) curly none down chin none 30000 100 1000 250 13
Figure 8 (c) straight none side short taper 30000 100 1000 1000 8
Figure 8 (d) straight ponytail down chin none 30000 100 1000 1000 8
Figure 8 (e) straight none down short none 30000 100 1000 1000 8
Figure 8 (f) straight behind-ear down ear textured 30000 100 500 125 4
Figure 8 (g) wavy none down shoulder none 30000 100 500 500 4

𝜎scale = 𝜎clump = 10−1 and |𝐵𝑘 | = min (𝑛/100, 200). In practice, this
can have high variance, and so at every iteration we compute the
loss 5 times for 5 different subsets for the first 3/4 of the optimization,
which we increase to 50 for the last 1/4.

For the operator random number stage, we optimize for 𝑁rand =

3000 iterations. We use the same optimizer as the operator stage,
but increase the learning rate to 1 · 10−1. We set 𝜆𝑑rand = 2 and
𝜆𝑙rand = 1 · 10−2.

7 Results

To validate our method, we test on 14 different synthetic and real-
world grooms, selected to cover a variety of operators and hairstyles.

7.1 Hairstyle Diversity

We demonstrate the diversity of our examples by evaluating
them against the comprehensive hairstyle taxonomy proposed
by Meishvili et al. [2024]. This taxonomy provides a universal de-
scription that captures the diversity and full range of hairstyles. In
Table 1, we show the taxonomic labels for our 14 examples and
demonstrate that they cover the full variation in most of the la-
bels. Our examples have full coverage in Hair Type, Direction, and
Layering labels, covering all variations for each of these labels. For
the Length label, we choose five most representative hair lengths
excluding bald, as well as lengths that are longer than the shoulder,
since they do not pose unique challenges for us. The Decoration
label is omitted for the same reason. For the Gathered label, we
focused on behind the ear and ponytail examples, since the other
variations (buns and knots) mostly stay static so they are out of scope
for the applications of our method. We omit the Strand Styling label
and the associated Strand Thickness as our method currently does
not support the reconstruction of dreadlocks or braids. To make
these hairstyles editable, we would need specialized dreadlock and
braid operators. Additionally, we only annotate our examples with
local taxonomic labels, as global labels such as Bang Style and Hair
Parting do not present unique challenges for reconstruction and are
therefore not prioritized in our evaluation.

7.2 Evaluation on Synthetic Procedural Grooms

To validate our method, we test on 7 synthetic grooms as seen
in Figure 7. Each groom was generated using our pipeline, with
guide strands designed by artists in Blender. We assume only the
target strands x̂ and the set of grooming operators are given. We
optimize for the guides as well as operator parameters. We compare
the target groom and ground truth guides to our procedural grooms
and recovered guides, and also show the parameter values and
their errors over optimization. Note that we do not assume the
number of guides are known, and so it is expected that there are
slight differences in the guide shapes and parameter values. Our
method typically reconstructs accurate guides with low parameter
errors. In some cases, such as the last groom in Figure 7, when the
operators significantly deform the strands over the guides (high
bend angle), the high amount of random variation caused by the
random parameters causes the reconstruction to be less accurate.

7.3 Evaluation on Real-world Examples

To evaluate our method on real-world examples, we transform 7
subjects whose hair strands are reconstructed using Gaussian Hair-
cut [Zakharov et al. 2024] and MonoHair [Wu et al. 2024]. We test
on a variety of hairstyles from the monocular dataset [Sklyarova
et al. 2023], the MonoHair dataset [Wu et al. 2024], and a custom
individual. Figure 8 shows our results, where we show renders in
Cycles, as well as a visualization of the strands and guides. The
example in Figure 8 (a), generated using MonoHair, is a particularly
challenging example for us to optimize due to the poor structural
integrity of the target (unnatural inner strands, see Figure 14).

7.4 Ablations and Evaluation

Figure 9 shows qualitative ablations on guide initialization and opti-
mization, and operator parameter and random number optimization.
We also provide further detailed ablations and evaluations of our
pipeline in Appendix B.
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Fig. 7. Synthetic Grooms. We recover the guide strands and operator parameters of 7 synthetic grooms. We visualize the recovered procedural groom, guide

strands, and show parameter values and errors over optimization iterations. Grooms adapted from Hair Styles ©Daniel Bystedt.
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(a)
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(e)

(f)
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Target Groom Our Groom Target Groom Our Groom Our Guides Ours Edited

Fig. 8. Real Grooms. We recover the guide strands and operator parameters of 7 grooms from previous reconstruction work. We visualize the non-procedural

target grooms and our recovered grooms and guides. We also show a simple procedural edit for each.
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Ours Full No Clustering No Gradient FilteringTarget Guides No Guide OptimizationNo Curvature Parameterization

Ours Full L2 Loss No Random Number OptimizationTarget Strands No Operators

Fig. 9. Ablations. We show ablations for our operator parameter and random number optimization stages (top) and guide initialization and optimization

(bottom). In the top row, we assume known guide strands. Our full method is able to recover near perfect strands. Using an L2 loss instead of our operator

losses fails to recover the correct operator parameters, leading to incorrect curliness. Not applying our random number optimization leads to correct operator

parameters, but incorrect local strand orientations as shown by the ellipse. If we do not have a curl operator and simply optimize guides and instancing, we

can obtain a curly groom, but local strand orientations are incorrect, and the curliness cannot be edited. In the bottom row, we do not assume anything is

known. If we do not initialize using clustering and instead optimize from a straight initialization shown in the inset, the result is overly smooth as shown in

the ellipse. In contrast, ignoring either the gradient filtering or curvature parameterization leads to guides with baked variation. Not applying the guide

optimization at all can cause issues like a guide penetrating the head, as shown in the ellipse, when the clustering initialization is not optimal. Groom adapted

from Hair Styles ©Daniel Bystedt.

7.5 Editing and Simulation

The last column of Figure 8 shows edits for each of the real examples,
changing multiple operator parameters. For more fine-grained edits,
Figure 10 (i)-(vi) show edits to the groom from Figure 1. We edit
the guides as well as change a few operator parameters to show
the different types of grooms that can be achieved with our groom-
ing pipeline. Additionally, since our hair grooms have reasonable
hair even in non-visible regions, our results can easily be used in
simulations. We show a frame each from 2 different simulations in
Figure 10. We use only our final dense strands in the simulations;
our guide strands are not used. Instead, we subsample 10k strands
to use as simulation “guides”, which have the effect of all operators,
including curl, baked in. We then bind these simulation “guides” to
the dense strands, akin to interpolation. We use a custom simulator
based on XPBD [Macklin et al. 2016]. Please see our video for full
clips of both editing and simulation.

8 Conclusion and Future Work

We presented a pipeline for transforming unstructured hair strands
obtained from artist designed grooms and hair reconstruction meth-
ods into procedural hair grooms. Our optimization strategies enable
reconstructing artist-inspired guide strands and grooming operator
parameters for various complex hairstyles. By using a procedural

pipeline, our transformed grooms can be easily edited and also
guarantee sensible inner hair structure.

Limitations and Future Work. While our method is able to trans-
form complex hairstyles, we do not target exact strand-level accu-
racy and so may miss some local features, especially in real hair
that is typically more irregular and may be more difficult to express
procedurally. The grooming systems of 3D modeling tools such as
Blender and Houdini are able to express these more challenging
hairstyles by including more complex operators and more flexi-
ble graph connectivity of the operators. Extending our grooming
pipeline to match these production systems would help generalize
our method to even more hairstyles. This would likely necessi-
tate further loss function and optimization design. In addition, our
method assumes the set and connectivity of grooming operators and
the number of guide strands is given. Automatically determining the
topology of the operators and reasonable initial parameters would
reduce the amount of user-provided input and improve robustness.
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A Grooming Operator Formulations

Each operator takes in the current strands x𝑖 , operator guides gop𝑖 ,
and outputs deformed strands x̃𝑖 , For brevity, we drop the strand
index 𝑖 from now on in this section and simply use the vertex/seg-
ment index 𝑗 . Operators may draw random numbers 𝑢 from either
N̂ (0, 1), the truncated normal distribution, bounded between [−1, 1],
or𝑈 (0, 1), the uniform distribution. These 𝑢 are different for each
strand, with the exception of curl, in which each strand assigned to
the same operator guide uses the same random number, which we
denote as 𝑢𝑔 . We list the parameters for each operator.

Below are some common operations across all operators:

𝑒 𝑗 = 𝑥 𝑗+1 − 𝑥 𝑗 strand segment
ℓ𝑗 =

����𝑒 𝑗 ���� segment length

𝑙 =

𝑚−1∑︁
𝑗=1

ℓ𝑗 strand length

𝑣 𝑗 =

𝑗∑︁
𝑗 ′=1

ℓ𝑗

𝑙
normalized distance along strand
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Bend. Parameters: Angle 𝜗 , bend start 𝜁 . 𝑅(axis, angle) constructs
an axis-angle rotation matrix.

𝑢 ∼ N̂ (0, 1)
𝑒op1 = 𝑔op2 − 𝑔op1 guide root direction

𝜈aux =

{
(0, 1, 0),

���𝑒yop1

��� < 10−1

(1, 0, 0), otherwise
𝜈 = 𝑒op1 × 𝜈aux bend axis
𝑅1 = 𝑅(𝑒op1 , 𝜋𝑢)

𝜈 ′ =
𝑅1𝜈

| |𝑅1𝜈 | |
rotate bend axis

𝜁 ′𝑗 = sigmoid(10(𝑣 𝑗 − 𝜁 )) start smooth indicator

𝑙 ′ =
𝑚−1∑︁
𝑗=1

ℓ𝑗𝜁 𝑗 length after bend start

𝑣 ′𝑗 =
𝑗∑︁

𝑗 ′=1

ℓ𝑗𝜁 𝑗

𝑙 ′
norm. distance from bend start

𝑅2 = 𝑅(𝜈 ′, 𝜗𝑣 ′𝑗 )
𝑒′𝑗 = 𝑅2𝑒 𝑗 bend segment

𝑥 𝑗 =

{
𝑥1, 𝑗 = 1
𝑥1 +

∑𝑗

𝑗 ′=1 𝑒
′
𝑗
, otherwise

sum segments to get vertices

Curl. Parameters: Radius 𝜌 , frequency 𝜔 , random frequency
𝜔rand, curl start 𝜁 .

𝑢
𝑔

1 ∼ N̂ (0, 1)
𝑢
𝑔

2 ∼ 𝑈 (0, 1)
𝜔 ′ = max(3(𝜔 + 𝜔rand𝑢

𝑔

1), 0) compute frequency

𝜗 𝑗 =
©«
𝑗∑︁

𝑗 ′=1
ℓ𝑗 ′𝜔

′ª®¬ + 3.9𝑢𝑔2 compute phase

𝜌′𝑗 = 𝜌 (0.43 + 0.79𝑣 𝑗 ) increase radius towards tip
𝛽x𝑗 = 𝜌

′
𝑗 sin (2𝜋𝜗 𝑗 )

𝛽
y
𝑗
= 𝜌′𝑗 cos (2𝜋𝜗 𝑗 ) curl shape

𝜏 𝑗 =



𝑔op2 −𝑔op1����𝑔op2 −𝑔op1
���� , 𝑗 = 1

𝑔op𝑚 −𝑔op𝑚−1����𝑔op𝑚 −𝑔op𝑚−1
���� , 𝑗 =𝑚

𝑔op𝑗+1 −𝑔op𝑗−1������𝑔op𝑗+1 −𝑔op𝑗−1

������ , otherwise
guide segment directions

�̂� 𝑗 =


(1, 0, 0),

���𝜏x𝑗 ��� + ���𝜏y𝑗 ��� < 10−4

(𝜏y
𝑗
,−𝜏x𝑗 ,0)������(𝜏y𝑗 ,−𝜏x𝑗 ,0) ������ , otherwise

normal

𝑏 𝑗 = 𝜏 𝑗 × �̂� 𝑗 binormal
𝜁 ′𝑗 = sigmoid(10(𝑣 𝑗 − 𝜁 )) start smooth indicator

𝑥 𝑗 =

{
𝑥1, 𝑗 = 1
𝑥 𝑗 + 𝜁 ′𝑗 (𝛽

x
𝑗
�̂� 𝑗 + 𝛽y𝑗 𝑏 𝑗 ), otherwise

add curl shape

Scale. Parameters: Random scale 𝜂.

𝑢 ∼ N̂ (0, 1)
𝜂′ = 1 + 𝜂𝑢 compute scale factor
𝑥 𝑗 = 𝑥1 + 𝜂′ (𝑥 𝑗 − 𝑥1) scale strand

Clump. Parameters: Profile 𝑎.

𝑎′𝑗 = 1 − exp(−𝑎𝑣 𝑗 ) 0 at root, decays towards 1 at tip
𝑥 𝑗 = (1 − 𝑎′𝑗 )𝑥 𝑗 + 𝑎

′
𝑗𝑔op𝑗 blend strand and guide

Frizz. Parameters: Frequency 𝜔 , amplitude 𝛼 . perlin implements
1D Perlin noise [Perlin 1985] and 𝜉𝑐 is an arbitrary offset for 𝑐 =

x, y, z.

𝑢 ∼ 𝑈 (0, 1)
𝜒 𝑗 = 𝜔𝑙 𝑗𝑣 𝑗 + 10𝑢 random offset

𝜀𝑐𝑗 =
2
3 (perlin(𝜒 𝑗 + 𝜉

𝑐 ) + 1
3perlin(2(𝜒 𝑗 + 𝜉

𝑐 ))) fractal noise

𝑥 𝑗 =

{
𝑥1, 𝑗 = 1
𝑥 𝑗 + 1

2𝛼𝜀 𝑗 , otherwise
add noise to strand

B Additional Ablations and Further Evaluation

Guide Smoothing. In Figure 11, we analyze the effect of smoothing
the clustered centroids before using them as guide strands. This is
controlled by the number of steps 𝑁smooth used to solve the heat
equation. With 𝑁smooth = 0, we apply no smoothing, and as 𝑁smooth
increases, the strands approach the heat equation solution, which
are completely straight strands. When no smoothing is applied to a
curly groom, the curls are baked into the guides rather than the curl
operator. Thus, the curl operator radius and frequency parameters
are lower than desired. When we apply a high amount of smoothing,
the guides become oversmoothed, and local details in the strands
may be lost. Thus finding a good smoothing amount is important.
We find 𝑁smooth = 80 to be a good default for many grooms.

Instancing weights optimization. In Figure 12, we study the effect
of optimizing the instancing weights. In (a), we construct a synthetic
example where the target guide strands and operator parameters are
known, and the instancing weights𝑤 are randomly sampled from
the standard normal distribution. We then verify that optimizing the
instancing weights converges to the same set of instanced strands.
In (b) we show empirically that strands reconstructed from real
examples are poorly represented using distance-based interpolation,
leading to instabilities during guide optimization.

Removing flawed strands. In Figure 13, we compare the effect of
removing flawed inner hair as discussed in Section 5.7 on optimiza-
tion. Keeping flawed inner hair can bias the optimization towards
undesirable parameters, such as short, straight strands.

Structural integrity comparison with MonoHair. In Figure 14, we
compare the structure of the inner hair of our procedural groomwith
MonoHair [Wu et al. 2024]. MonoHair is the current state-of-the-art
for reconstructing curly hair examples, but suffers from poor inner
hair structure, as seen by the highlighted straight, short strands. On
the other hand, our curl operator ensures that the strands are all
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Fig. 11. Guide Initialization Smoothing. We analyze the effect of guide smoothing by running our optimization for 3 different amounts of smoothing

(𝑁
smooth

= 0, 80, 300: no smoothing, normal, high). We visualize the initial guides after smoothing, the final guides and groom after the entire optimization

pipeline, as well as the parameter values and Mean Absolute Error (MAE) over optimization. When we do not apply any smoothing, the curls are baked into the

guides rather than the curl operator. With a high amount of smoothing, the initial guides are nearly straight. Our guide optimization fixes the oversmoothed

guides to an extent, but misses some details. Setting 𝑁
smooth

= 80 recovers the best guides and parameters. Groom adapted from Hair Styles ©Daniel Bystedt.
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Fig. 12. Instancing Weights Optimization. We analyze the effect of optimizing the instancing weights. (a) We construct a synthetic example where all

grooming pipeline parameters are known except the instancing weights. Using a simple distance-based interpolation can cause strand differences (note the

bundle of hair on the left is too thin). By optimizing for the weights, we can achieve the exact reconstruction, which we validate by comparing Mean Squared

Error (MSE) in instancing weights and MSE on strand vertices. (b) On real examples, optimizing the instancing weights can prevent issues during guide

optimization when dense strands are poorly interpolated using a distance-based interpolation. Synthetic groom adapted from Hair Styles ©Daniel Bystedt.
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Target Groom Flawed Strands Removed Flawed Strands Kept

Fig. 13. Removing flawed strands. Neural hair reconstruction methods

that infer inner hair using data-driven priors can have flawed strands. For

example, in this groom, the inner hair in the back is short and straight,

rather than curly as expected, as seen in Figure 14. Optimizing using these

flawed strands causes the guide optimization to fit to the short strands,

reducing the hair length of the back. Removing the flawed strands helps

prevent this.

MonoHair Ours

Fig. 14. Structural Integrity Comparison with MonoHair. We visualize

the inner hair of a curly groom reconstructed using MonoHair [Wu et al.

2024] compared to ours. Short, straight strands, which are undesired, are

highlighted in red. Our procedural operators ensure that most strands in a

curly groom are curly, whereas MonoHair generates unnatural straight hair.

curly to some extent, although we lose some reconstruction quality
due to the flawed target, as shown in Figure 13.

Operator losses. In Figure 15 and Figure 16, we compare our prob-
abilistic losses with a simple vertex-wise L2 loss. We construct
synthetic examples with varying amounts of known parameters:
known guides or random numbers. The L2 loss can optimize some
operator parameters in simple cases, but quickly fails with more
unknowns.

Gradient noise. In Figure 17, we compare optimizing the opera-
tor random numbers with and without adding noise to the gradi-
ents. When operators are nonlinear, the noise can help escape local
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Fig. 15. Strand shape loss. We compare our loss functions in optimizing

the curl operator, a strand shape operator, in a synthetic example. Here

we assume the guide strands are known, and we compare MAE on the

parameter values. When the random numbers are also known, there is a set

of parameters that would exactly match the target strands. Even in this case,

as curl is a nonlinear function in its parameters, a vertex-wise L2 loss cannot

optimize to the correct parameters, whereas ours converges to the exact

parameters. When the random numbers are not known, an exact match

cannot be expected. Ours converges to within a reasonable tolerance, while

the L2 loss still diverges. Groom adapted from Hair Styles ©Daniel Bystedt.

minima that prevent matching local strand orientations like seen
in Figure 9.

Number of guides. In Figure 18, we compare optimization at in-
creasing numbers of guide strands 𝑛𝑔 . The number of guide strands
trades off strand accuracy with editability. We typically choose
𝑛𝑔 = 500 or 𝑛𝑔 = 1000, which are similar numbers used in artist-
designed procedural grooms.

Number of operator guides. In Figure 19, we compare optimization
at increasing numbers of operator guide strands. The number of
operator guide strands in a curly groom changes the number and
size of the curls, as all strands assigned to an operator guide curl
around that operator guide. The number of operator guides should
thus be chosen based on the style of the target groom.

Guide strand generation comparison with Perm. In Figure 20, we
compare our guide strand initialization and optimization with the
guide strand generation from Perm [He et al. 2024] as shown in Fig-
ure 20. Their method uses a learned representation based on Style-
GAN2 [Karras et al. 2020]. Thus, while their method generates
reasonable smooth strands following the overall hair shape, they
are unable fit accurate guide strands to specific grooms, especially
challenging ones, like the curly and frizzy groom in the first row.
On the other hand, our clustering and optimization is a more direct
approach that can recover accurate guide strands.
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Fig. 16. Strand correlation loss. We compare our loss functions in optimizing the clump and scale operators, which are strand correlation operators, in a

synthetic example. We compare MAE on the parameter values. First, we assume the guide strands are known. When the random numbers are also known,

there is a set of parameters that would exactly match the target strands. As both operators are monotonic functions in their parameters, both our loss and the

vertex-wise L2 loss can optimize to the correct parameters. When the random numbers are not known, an exact match cannot be expected. Both our loss and

the L2 loss can optimize the clump operator, which has no random parameters, but only our loss can optimize the scale operator. When neither the guides nor

the random numbers are known, our loss can optimize to parameters within a reasonable tolerance, while the L2 loss can optimize neither. Groom adapted

from Hair Styles ©Daniel Bystedt.
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Fig. 17. Gradient Noise. We compare optimizing the operator random numbers with and without adding noise to the gradients. Here, we assume both the

guide strands, as well as the operator parameters are known, only the operator random numbers are not known. We measure both the parameter MAE, as well

as MSE on the strand vertex positions (shown in log scale). When optimizing for scale, which is a linear function in the random numbers, both methods can

optimize to the correct random numbers. When optimizing curl, which nonlinear in its random numbers, not adding noise quickly gets stuck in a local minima.

Adding noise can help escape the local minima and continue reducing the parameter and geometry errors. Groom adapted from Hair Styles ©Daniel Bystedt.
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Fig. 18. Number of guides. We compare the effect of the number of guide strands on the optimization, from 𝑛𝑔 = 100, to 𝑛𝑔 = 30000, which is the same

number of guides as the number of dense strands 𝑛. As we increase the number of guides, we can match more detail in the target groom. However, increasing

the number of guides reduces the ease of editing the procedural groom.
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Fig. 19. Number of operator guides. We compare the effect of the number of operator guides strands on the optimization, from 𝑛𝑔op = 10 to 𝑛𝑔op = 500,
which is the exact set of 𝑛𝑔 guides used. Increasing the number of operator guides changes the number and width of the curls in the groom.
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(b) Target Guides (c) Our Guides (d) Perm Guides(a) Target Groom

Fig. 20. Comparison with Perm. Given target grooms (a), our guide clustering and optimization (c) result in more accurate guide strands (b) compared to the

learned guide strand generation of Perm [He et al. 2024] (d). Grooms adapted from Hair Styles ©Daniel Bystedt.
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