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I Forward and Inverse Rendering
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I Iterative Optimization via Gradient Descent as Real-time Rendering
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ReSTIR: Reservoir-based Spatiotemporal Importance Resampling [Bitterli et al. 2020]

Sequence of
similar noisy frames

Reuse of
previous frames



Motivation: Exploit Optimization History Using ReSTIR

Reuse previous

sample to replace

noisy gradient
estimate

1 spp:
Fast, but
noisy gradients



How does ReSTIR work?

Want a process that:

1. Takes as input samples (rays) from
previous and current frames

2. Selects and stores only a single sample O
per pixel

3. Reduces variance (noise) through reuse




RIS: Resampled Importance Sampling [Talbot et al. 2005]
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RIS: Resampled Importance Sampling [Talbot et al. 2005]
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I RIS: Resampled Importance Sampling [Talbot et al. 2005]

1. Input samples from
previous and current
frames

— Candidates v/

2. One sample per pixel
— Output sample
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| 3. Reduces variance
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The Problem with Pixel-centric Differentiable Rendering

Forward
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Single
intensity /
for each of
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One derivative for
each texel m; in
each pixel
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M texels =
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Our Parameter-space Differentiable Rendering Formulation
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Only M samples,

one for each texel
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I Our Parameter-space Differentiable Rendering Formulation
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RIS and Real-valued Functions
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I Positivization [Owen and Zhou 2000]
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Our Positivized RIS Estimator

Evaluate g for sign, and
categorize candidate

Generate candidates ~ p

Resample one sample
each from both sets

O

In practice, we use
GRIS [Lin et al. 2022]
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I Our Texture Optimization Algorithm
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sample per texel
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I Results: Gradients — Disney BSDF Roughness

Initial Mitsuba 3
Texture Gradient Baseline Ours Reference
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Results: Inverse Rendering — Disney BSDF Anisotropy

Mitsuba 3
Initial Baseline Ours Target
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Results: Positivized (G)RIS

Without Pos. With Pos.

Rendering
1.00 X 0.83 X < Error 27|



Results: Inverse Rendering Video —1 spp

Initial
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Summary

» Parameter-space differentiable rendering enables efficient
derivative reuse.

» Positivized RIS extends RIS to real-valued functions.

» Reusing samples from previous gradient descent iterations
results in faster inverse rendering.
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Conclusion

» Physically-based differentiable rendering
has historically been slow.

» But we can leverage decades of (real-time)
rendering research to make it fast.

» Our framework is applicable to other
optimization problems outside rendering.

Wesley Chang
Email: wec022@ucsd.edu

Project Page: weschang.com/publications/restir-dr/
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