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Forward and Inverse Rendering
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Forward Rendering

Inverse Rendering
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Iterative Optimization via Gradient Descent as Real-time Rendering
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Rendering

Target

Differentiable Rendering 
to compute ∇ℒ

and update texture

Forward Rendering

ℒ
Many iterations:
can take hours!
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ReSTIR: Reservoir-based Spatiotemporal Importance Resampling [Bitterli et al. 2020]
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Sequence of 
similar noisy frames Reuse of

previous frames
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Motivation: Exploit Optimization History Using ReSTIR
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Reuse previous 
sample to replace 

noisy gradient 
estimate

1 spp:
Fast, but

noisy gradients 
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How does ReSTIR work?

1. Takes as input samples (rays) from 
previous and current frames
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Want a process that:

2. Selects and stores only a single sample 
per pixel

3. Reduces variance (noise) through reuse
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RIS: Resampled Importance Sampling [Talbot et al. 2005]
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∫ 𝑓 𝑥 𝑑𝑥

Sample 𝑞 ≈ 𝑓

𝑥
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RIS: Resampled Importance Sampling [Talbot et al. 2005]
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Generate 
candidates ~ 𝑝

Construct PMF using

w =
𝑞 𝑥

𝑝 𝑥

Resample ∝ 𝑤
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RIS: Resampled Importance Sampling [Talbot et al. 2005]
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Approximately ~ 𝑞 ≈ 𝑓

1. Input samples from 
previous and current 
frames

2. One sample per pixel

3. Reduces variance 
through reuse

→ Candidates               

→ Output sample               

→ Sampling 
 ≈ 𝒒 ≈ 𝒇 
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ReSTIR for 
Differentiable 
Rendering
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The Problem with Pixel-centric Differentiable Rendering
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Forward 
Rendering

Differentiable 
Rendering

Single 
intensity 𝐼 
for each of 

N pixels
=

N samples

One derivative for 
each texel 𝜋𝑖  in 

each pixel

𝜕𝐼

𝜕𝜋2
⋯

𝜕𝐼

𝜕𝜋0

𝜕𝐼

𝜕𝜋1

M texels =
N ⋅ M samples
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The Problem with Pixel-centric Differentiable Rendering
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Forward 
Rendering

Differentiable 
Rendering

Single 
intensity 𝐼 
for each of 

N pixels
=

N samples

One derivative for 
each texel 𝜋𝑖  in 

each pixel

𝜕𝐼

𝜕𝜋2
⋯

𝜕𝐼

𝜕𝜋0

𝜕𝐼

𝜕𝜋1

M texels =
N ⋅ M samples
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𝜕𝐼0

𝜕𝜋2

𝜕𝐼0

𝜕𝜋1

𝜕𝐼0

𝜕𝜋0

Our Parameter-space Differentiable Rendering Formulation
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𝜕𝐼1

𝜕𝜋0

𝜕𝐼1

𝜕𝜋1

𝜕𝐼1

𝜕𝜋2

Only M samples,
one for each texel

𝜕ℒ

𝜕𝜋𝑖
= න w 𝑥 𝜕𝜋𝑖

𝑓 𝑥, 𝜋 𝑑𝑥



BEST FOR You
O R G A N I C S  C O M P A N Y

Our Parameter-space Differentiable Rendering Formulation
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𝜕ℒ

𝜕𝜋𝑖
= න w 𝑥 𝜕𝜋𝑖

𝑓 𝑥, 𝜋 𝑑𝑥

Derivative of 
measurement

Weight of path 
on the image loss
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RIS and Real-valued Functions
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∫ 𝜕𝑓 𝑥 𝑑𝑥

Sample 𝑞 ≈ 𝜕𝑓 ?

𝑥

∫ 𝑓 𝑥 𝑑𝑥

𝑉
𝜕𝑓

𝜕𝑓
≠ 0

Noise due to sign
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Sample 𝑞+, 𝑞−

Positivization [Owen and Zhou 2000]
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Variance → 0 when 
𝑞+ = max(𝜕𝑓, 0)      𝑞− = max(−𝜕𝑓, 0)

−−
𝑥

+

∫ 𝜕𝑓 𝑥 𝑑𝑥
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Our Positivized RIS Estimator
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Generate candidates ~ 𝑝

Evaluate 𝑞 for sign, and 
categorize candidate

Resample one sample 
each from both sets

In practice, we use 
GRIS [Lin et al. 2022]



BEST FOR You
O R G A N I C S  C O M P A N Y

Iteration 𝑖 + 1Iteration 𝑖

Our Texture Optimization Algorithm
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Store
1 positive, 1 negative
sample per texel
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Results: Gradients – Disney BSDF Roughness
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Mitsuba 3

Baseline Ours Reference

0.24 ×1.00 × ← Error

Initial

Target

Texture Gradient
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Results: Inverse Rendering – Disney BSDF Anisotropy
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Mitsuba 3

Baseline Ours Target

0.28 ×1.00 ×

Initial

2 − 3 ×    Faster Convergence

Rendering
← Error
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Results: Positivized (G)RIS
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Without Pos. With Pos.

1.00 × 0.83 ×

Rendering
← Error
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Results: Inverse Rendering Video – 1 spp

22

Mitsuba 3 Baseline Ours

Initial

Target
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Summary

» Parameter-space differentiable rendering enables efficient 
derivative reuse.

» Positivized RIS extends RIS to real-valued functions.

» Reusing samples from previous gradient descent iterations 
results in faster inverse rendering.
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Conclusion
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» Physically-based differentiable rendering 
has historically been slow.

» But we can leverage decades of (real-time) 
rendering research to make it fast.  

» Our framework is applicable to other 
optimization problems outside rendering.

Email: wec022@ucsd.edu

Project Page: weschang.com/publications/restir-dr/

Wesley Chang
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