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Forward and Inverse Rendering
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Optimization: Slow and Noisy
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Our Goal

Improve inverse rendering with a new gradient-based optimizer
 Faster optimizations: fewer samples, fewer iterations

 Better recovery quality: deal with noise



Spatial signals are often piecewise smooth
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Can we leverage this piecewise smoothness?



Gradient descent struggles with noisy gradients

Let’s try to optimize a 1D example:

Initial Reference



Gradient descent struggles with noisy gradients

Without noise, we get clean and accurate gradients

Noise-Free Gradients Reference




Gradient descent struggles with noisy gradients

Noise-free gradients lead to fast and high-quality optimization

Gradient Descent Reference



Gradient descent struggles with noisy gradients

Now add some noise to the gradients:




Gradient descent struggles with noisy gradients

Now add some noise to the gradients:




Gradient descent struggles with noisy gradients

Noisy gradients lead to poor convergence

Noise-Free Gradient Noisy Gradient



ADAM Optimizer to the rescue?
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ADAM Optimizer to the rescue?

Iteratlon
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ADAM Optimizer to the rescue?
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ADAM Optimizer to the rescue?

ADAM optimizer temporally filters the gradients

Gradient Descent Adam



Can we go beyond temporal filtering?



Spatial Filtering: Laplacian Smoothing

Laplacian smoothing gradient descent [Osher et al. 2018]
Large steps in inverse rendering of geometry [Nicolet et al. 2021]
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Spatial Filtering: Laplacian Smoothing

Smoother optimization!

Gradient Descent Adam Laplacian Smoothing



Spatial Filtering: Laplacian Smoothing




Can we preserve edges?



Can we preserve edges?
Edge-aware filters!



Ours: Edge-preserving Spatiotemporal Filtering
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Ours: Edge-preserving Spatiotemporal Filtering
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Ours: Edge-preserving Spatiotemporal Filtering

Il Edge-aware filters!
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Gradient Descent Adam

Laplacian Smoothing Our Method
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Implementation

Cross-bilateral filter for textures and volumes

e | ess than 4% overhead

For mesh, generalizes Large Steps [Nicolet et al. 2021]

* Replace Laplacian smoothing with Generalized Bilateral
Filter [Solomon et al. 2014]

e |Less than 10% overhead
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Results
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Volume Recovery
ADAM Ours




Mesh Recovery

Large Steps
INicolet et al 2021]







Conclusion

Takeaways

* Filters over space
e Filters over time

 Preserve edges
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See the paper for
Anisotropic preconditioning
Pre-filtering vs Post-filtering
Cross-bilateral filter vs Bilateral filter
Performance Considerations

And more!



Future Directions

More than inverse rendering:
* Inverse simulation
* Inverse PDE

 And more!
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weschang.com/publications/stadam Wesley Chang, Xuanda Yang, Yash Belhe
Code available! {wec(022, xuy008 ybelhe}@ucsd edu
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