
Supplementary Document: Spatiotemporal Bilateral Gradient Filtering

for Inverse Rendering

WESLEY CHANG
∗
, University of California San Diego, USA

XUANDA YANG
∗
, University of California San Diego, USA

YASH BELHE
∗
, University of California San Diego, USA

RAVI RAMAMOORTHI, University of California San Diego, USA

TZU-MAO LI, University of California San Diego, USA

ACM Reference Format:
Wesley Chang, Xuanda Yang, Yash Belhe, Ravi Ramamoorthi, and Tzu-Mao
Li. 2024. Supplementary Document: Spatiotemporal Bilateral Gradient Fil-
tering for Inverse Rendering. In SIGGRAPH Asia 2024 Conference Papers (SA
Conference Papers ’24), December 3–6, 2024, Tokyo, Japan. ACM, New York,
NY, USA, 6 pages. https://doi.org/10.1145/3680528.3687606

1 PREFILTERING AND POSTFILTERING

In Algorithm 2 of the main text, we propose to extend Adam’s tem-
poral filtering to a spatiotemporal filter. We can apply the spatial
filter before the exponential averages (prefiltering) or after the ex-
ponential averages (postfiltering). It is also possible to apply both a
prefilter and a postfilter, whereas, applying neither reduces to the
standard Adam algorithm.
In this section, we study the differences between the different

configurations theoretically, followed by an experimental analysis.
To recapitulate, we are interested in minimizing an objective func-
tion 𝑓 (𝜃) : R𝑛 → R, with gradient ∇𝜃𝑡 𝑓 at time 𝑡 , which we denote
as 𝑔𝑡 going forward.
Both prefiltering and postfiltering apply cross-bilateral filters.

These are linear operators [Milanfar 2013] which we denote as
𝐴, 𝐵 ∈ R𝑛×𝑛 respectively. The prefiltered gradient is

𝑔𝑡 = 𝐴𝑡𝑔𝑡 , (1)

and its (prefiltered) first and second moments are

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 (2)

=

𝑡∑︁
𝑖=1

(1 − 𝛽1)𝛽𝑡−𝑖1 𝐴𝑖𝑔𝑖 , (3)

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔2𝑡 (4)

=

𝑡∑︁
𝑖=1

(1 − 𝛽2)𝛽𝑡−𝑖2 (𝐴𝑖𝑔𝑖)2, (5)

∗The three authors contributed equally to this research.

Authors’ Contact Information: Wesley Chang, wec022@ucsd.edu, University of Cali-
fornia San Diego, USA; Xuanda Yang, xuy008@ucsd.edu, University of California San
Diego, USA; Yash Belhe, ybelhe@ucsd.edu, University of California San Diego, USA;
Ravi Ramamoorthi, ravir@ucsd.edu, University of California San Diego, USA; Tzu-Mao
Li, tzli@ucsd.edu, University of California San Diego, USA.

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan
© 2024 Copyright held by the owner/author(s).
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in SIGGRAPH Asia
2024 Conference Papers (SA Conference Papers ’24), December 3–6, 2024, Tokyo, Japan,
https://doi.org/10.1145/3680528.3687606.

where the square is component-wise. Postfiltering gives us

�̃�𝑡 = 𝐵𝑡𝑚𝑡 (6)

=

𝑡∑︁
𝑖=1

(1 − 𝛽1)𝛽𝑡−𝑖1 𝐵𝑡𝐴𝑖𝑔𝑖 , (7)

𝑣𝑡 = 𝐵𝑡𝑣𝑡 (8)

=

𝑡∑︁
𝑖=1

(1 − 𝛽2)𝛽𝑡−𝑖2 𝐵𝑡 (𝐴𝑖𝑔𝑖)2 . (9)

Notice that since prefiltering is applied to the gradient 𝑔𝑡 before
exponential moving averages,𝑚𝑡 and 𝑣𝑡 depend on all past prefilters
𝐴𝑖 . On the other hand, postfiltering is applied after exponential
moving averages, so𝑚𝑡 and 𝑣𝑡 do not accumulate any past postfilters
𝐵𝑖 ; they only depend on the current postfilter 𝐵𝑡 .

The resulting update step1 which includes both prefiltering and
postfiltering is

Δ𝑡 =
�̃�𝑡√
𝑣𝑡

(10)

=

∑𝑡
𝑖=1 (1 − 𝛽1)𝛽𝑡−𝑖1 𝐵𝑡𝐴𝑖𝑔𝑖√︃∑𝑡
𝑖=1 (1 − 𝛽2)𝛽𝑡−𝑖2 𝐵𝑡 (𝐴𝑖𝑔𝑖)2

. (11)

From this general update step, we can recover the update step for
Adam, prefiltering only and postfiltering only by appropriately set-
ting 𝐴𝑖 and/or 𝐵𝑖 to identity.

Δadam
𝑡 =

∑𝑡
𝑖=1 (1 − 𝛽1)𝛽𝑡−𝑖1 𝑔𝑖√︃∑𝑡
𝑖=1 (1 − 𝛽2)𝛽𝑡−𝑖2 𝑔2

𝑖

, (12)

Δ
pre
𝑡 =

∑𝑡
𝑖=1 (1 − 𝛽1)𝛽𝑡−𝑖1 𝐴𝑖𝑔𝑖√︃∑𝑡
𝑖=1 (1 − 𝛽2)𝛽𝑡−𝑖2 (𝐴𝑖𝑔𝑖)2

, (13)

Δ
post
𝑡 =

∑𝑡
𝑖=1 (1 − 𝛽1)𝛽𝑡−𝑖1 𝐵𝑡𝑔𝑖√︃∑𝑡
𝑖=1 (1 − 𝛽2)𝛽𝑡−𝑖2 𝐵𝑡 (𝑔𝑖)2

. (14)

The above update steps are hard to theoretically analyze directly.
Instead, we consider a simplified setting with 𝛽1 = 0, i.e. with no
temporal filtering in Section 1.1. This setting is indeed close to
the optimal value we practically use (𝛽1 = 0.2) under a restricted
iteration budget (see Section 5.1 in main text).

1We omit bias correction and multiplication with learning rate for ease of exposition.
The bias corrected versions of �̃�𝑡 and �̃�𝑡 are given by �̃�𝑡 /(1 − 𝛽𝑡1) and �̃�𝑡 /(1 − 𝛽𝑡2)
respectively.

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan.

https://doi.org/10.1145/3680528.3687606
https://doi.org/10.1145/3680528.3687606

2 • Wesley Chang, Xuanda Yang, Yash Belhe, Ravi Ramamoorthi, and Tzu-Mao Li

1.1 Analysis with no temporal filtering

Setting 𝛽1 = 𝛽2 = 0, the update steps simplify to

Δadam
𝑡 =

𝑔𝑡√︃
𝑔2𝑡

= sign(𝑔𝑡), (15)

Δ
pre
𝑡 =

𝐴𝑡𝑔𝑡√︁
(𝐴𝑡𝑔𝑡)2

= sign(𝐴𝑡𝑔𝑡), (16)

Δ
post
𝑡 =

𝐵𝑡𝑔𝑡√︁
𝐵𝑡 (𝑔𝑡)2

. (17)

Both Adam and prefiltering make a step solely based on the sign
of the gradient 𝑔𝑡 and prefiltered gradient 𝐴𝑡𝑔𝑡 respectively. Since
prefiltering reduces noise in the gradient, it also reduces noise in
the sign, which improves convergence. For an in-depth discussion
on the benefits of decreasing sign variance in inverse rendering,
please see Belhe et al. [2024] and Chang et al. [2023].
Postfiltering’s step is slightly more nuanced. To analyze it, we

inspect its 𝑗𝑡ℎ component

Δ
post
𝑡, 𝑗

=

∑𝑛
𝑘=1 𝐵𝑡, 𝑗𝑘𝑔𝑡,𝑘√︃∑𝑛
𝑘=1 𝐵𝑡, 𝑗𝑘𝑔

2
𝑡,𝑘

, (18)

where 𝐵𝑡, 𝑗𝑘 is the (𝑗, 𝑘)th element in 𝐵𝑡 and 𝑔𝑡,𝑘 is the 𝑘th compo-
nent of 𝑔.

Comparing the equation above with Equation (12) shows an inter-
esting similarly between postfiltering and the standard Adam step.
Both methods make a step based on ratio of the first moment to the
square root of the second moment. The key difference is that Adam
computes moments over time, while postfiltering computes
them over space.

This perspective also explains several of the practical advantages
we observe within the low 𝛽1 regime for the postfilter. Variance
adaptive optimizers, like our postfilter Equation (17), which ad-
just step sizes based on the estimated variance (the denominator
in Equation (18)) consistently outperform their sign-only counter-
parts [Balles and Hennig 2018], i.e Adam and prefiltering which
make constant sized steps Equations (15) and (16). Practically, we
find that with no temporal filtering or low values of 𝛽1, postfiltering
converges much faster than Adam, see Figure 1 in this text and
Figures 5, 8 in the main text.

1.2 Postfiltering is adaptive to noise.

We decompose the gradient 𝑔𝑡 = 𝑔𝑡 + 𝑛𝑡 , as a sum of its true value
𝑔𝑡 and zero-mean noise 𝑛𝑡 . An ideal postfilter 𝐵𝑡 should preserve
the moments of the true gradient 𝐵𝑡𝑔𝑡 = 𝑔𝑡 and 𝐵𝑡𝑔2𝑡 = 𝑔2𝑡 . It should
also filter out noise 𝐵𝑡𝑛𝑡 = 0 as well as its product with the true
gradient 𝐵𝑡 (𝑛𝑡𝑔𝑡) = 0, where the product 𝑛𝑡𝑔𝑡 is component-wise.
Thus, filtering the noisy gradient gives us the true gradient

𝐵𝑡𝑔𝑡 = 𝐵𝑡 (𝑔𝑡 + 𝑛𝑡) = 𝑔𝑡 . (19)

It can also be written component-wise as
𝑛∑︁

𝑘=1
𝐵𝑡, 𝑗𝑘𝑔𝑡,𝑘 = 𝑔𝑡, 𝑗 . (20)

lo
ss

iterations
50 100 150 200

reconstruction loss (L2) vs iterations

10

2

10
-2

adam

postfilter only (ours)

0

2

3

4

6

10
10

-2

lo
ss

0 20 40 60 80 100

adam

postfilter only (ours)

reconstruction loss (relative L2
w.r.t reference) vs iterations

iterations

Texture Recovery Volume Recovery

Fig. 1. Recovery with no temporal filtering. We compare Adam and

postfiltering with no temporal filtering, that is, with 𝛽1 = 𝛽2 = 0 for texture
and volume recovery (Figures 5 and 8 in main text). Without temporal

filtering, both our method and Adam are memoryless, this reduces each of

their memory overhead by 2/3rd since they no longer need to maintain

buffers for𝑚𝑡 and 𝑣𝑡 . For Adam, however, this comes at the cost of making

fixed sized steps, slowing down convergence in the presence of noise and

anisotropy, see Equation (15). On the other hand, our method can still

estimate the signal-to-noise ratio via spatial filtering, see Equation (17).

This enables it to make dynamic step sizes, which converges faster in the

presence of noise and anisotropy, see loss curves above.

Now, substituting this into the postfilter step Equation (18), we get

Δ
post
𝑡, 𝑗

=

∑𝑛
𝑘=1 𝐵𝑡, 𝑗𝑘𝑔𝑡,𝑘√︃∑𝑛
𝑘=1 𝐵𝑡, 𝑗𝑘𝑔

2
𝑡,𝑘

, (21)

=

∑𝑛
𝑘=1 𝐵𝑡, 𝑗𝑘 (𝑔𝑡 + 𝑛𝑡)√︃∑𝑛
𝑘=1 𝐵𝑡, 𝑗𝑘 (𝑔𝑡 + 𝑛𝑡)2

, (22)

=
𝑔𝑡, 𝑗√︃∑𝑛

𝑘=1 𝐵𝑡, 𝑗𝑘 (𝑔
2
𝑡,𝑘

+ 2𝑔𝑡,𝑘𝑛𝑡,𝑘 + 𝑛2
𝑡,𝑘

)
, (23)

=
𝑔𝑡, 𝑗√︃

𝑔2
𝑡, 𝑗

+∑𝑛
𝑘=1 𝐵𝑡, 𝑗𝑘𝑛

2
𝑡,𝑘

, (24)

where the third step comes from Equation (20) and the fourth step
comes from the properties of an ideal postfilter listed in the begin-
ning of this section. Now, examining Equation (24), we see that since
𝐵𝑡, 𝑗𝑘𝑛

2
𝑡,𝑘

≥ 0 (both terms are non-negative), the denominator grows
as the noise increases, reducing the learning rate. Therefore, even
with 𝛽1 = 𝛽2 = 0 postfiltering adapts its learning rate according
to the signal-to-noise ratio, unlike prefiltering and Adam in this
regime, which make constant sized steps Equations (15) and (16).

1.3 Postfiltering𝑚𝑡 and 𝑣𝑡 keeps the update step bounded

In the main text, we advocate to postfilter both𝑚𝑡 and 𝑣𝑡 jointly,
since this maintains Adam’s bounded step size. Formally, given that���� 𝑚𝑡√

𝑣𝑡

���� ≤ 1, (25)

we want to prove that ���� �̃�𝑡√
𝑣𝑡

���� ≤ 1. (26)

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan.

Supplementary Document: Spatiotemporal Bilateral Gradient Filtering for Inverse Rendering • 3

Note that in the identities above,𝑚𝑡 and 𝑣𝑡 are vectors so the in-
equalities hold for each of their components.
We now prove the inequality above for the 𝑗𝑡ℎ component. The

filtered moments are given by

�̃�𝑡, 𝑗 =

𝑛∑︁
𝑘=1

𝐵𝑡, 𝑗𝑘𝑚𝑡,𝑘 , (27)

𝑣𝑡, 𝑗 =

𝑛∑︁
𝑘=1

𝐵𝑡, 𝑗𝑘𝑣𝑡,𝑘 , (28)

where
∑𝑛
𝑘=1 𝐵𝑡, 𝑗𝑘 = 1 since the cross-bilateral filter is normalized

and its weights sum up to 1 and 0 ≤ 𝐵𝑡, 𝑗𝑘 ≤ 1 ∀𝑘 ∈ {1, ..., 𝑛} since
the weights are always non-negative. Then we have

𝑛∑︁
𝑘=1

𝐵𝑡, 𝑗𝑘𝑚𝑡,𝑘 =

𝑛∑︁
𝑘=1

(√︃
𝐵𝑡, 𝑗𝑘

) (√︃
𝐵𝑡, 𝑗𝑘𝑚𝑡,𝑘

)
(29)����� 𝑛∑︁

𝑘=1
𝐵𝑡, 𝑗𝑘𝑚𝑡,𝑘

�����2 ≤
𝑛∑︁

𝑘=1

(√︃
𝐵𝑡, 𝑗𝑘

)2 𝑛∑︁
𝑘=1

(√︃
𝐵𝑡, 𝑗𝑘𝑚𝑡,𝑘

)2
(30)

=

𝑛∑︁
𝑘=1

𝐵𝑡, 𝑗𝑘

𝑛∑︁
𝑘=1

𝐵𝑡, 𝑗𝑘𝑚
2
𝑡,𝑘

(31)

=

𝑛∑︁
𝑘=1

𝐵𝑡, 𝑗𝑘𝑚
2
𝑡,𝑘

(32)

≤
𝑛∑︁

𝑘=1
𝐵𝑡, 𝑗𝑘𝑣𝑡,𝑘 , (33)

where the second step is the Cauchy-Schwarz inequality and the
fourth step holds because

∑𝑛
𝑘=1 𝐵𝑡, 𝑗𝑘 = 1. The final step holds be-

cause𝑚2
𝑡,𝑘

≤ 𝑣𝑡,𝑘 . Therefore, we have����� 𝑛∑︁
𝑘=1

𝐵𝑡, 𝑗𝑘𝑚𝑡,𝑘

����� ≤
√√√ 𝑛∑︁

𝑘=1
𝐵𝑡, 𝑗𝑘𝑣𝑡,𝑘 . (34)

Now, substituting Equations (27) and (28) into the equation above,
we get ���̃�𝑡, 𝑗

�� ≤ √︃
𝑣𝑡, 𝑗 , (35)����� �̃�𝑡, 𝑗√︁

𝑣𝑡, 𝑗

����� ≤ 1, (36)

which completes the proof.

2 OVERHEAD FOR OUR METHOD

Our method has little overhead over Adam (< 4%) for grid-based
applications Table 1 and inverse mesh recovery (< 10%) Section 2.

3 HYPERPARAMETER ABLATIONS

For grid-based applications, our method introduces two hyperpa-
rameters: the filter size 𝐹 and the edge-preserving data term weight
𝜎𝑑 . These hyperparameters effectively trade off Monte Carlo noise
in the gradient with spatial smoothing. When 𝐹 is small, our method
approaches Adam, and the noise in the gradient results in noise in
the recovered texture. When 𝐹 is large, our method approaches low-
pass filtering, and exhibits little noise, but results in overblurred

Table 1. Texture and Volume filtering overhead.We report the average

per-iteration timings for our method and Adam, for texture and volume

optimization. For both tasks, this includes time for both (differentiable)

rendering and updating parameters. For texture optimization (Figure 5 in

main text), our method incurs up to 3.4% overhead. For volume optimization

(Figure 9 in main text), the runtime is dominated by forward rendering and

derivative estimation (> 99%). Interestingly, we find that our method has

a lower wall clock time than Adam for (differentiable) volume rendering.

This is because volume rendering time is highly dependent on parameter

values [Nimier-David et al. 2022].

Example Method Time % Change Grid

Texture Adam 247ms - 5122
Texture Ours (𝐹 = 3) 251ms 1.78% 5122
Texture Ours (𝐹 = 5) 255ms 3.40% 5122

Volume Adam 1380ms - 643
Volume Ours (𝐹 = 3) 1046ms -24.2% 643
Volume Ours (𝐹 = 5) 1058ms -23.3% 643

Table 2. Mesh filtering overhead We measure the average time per opti-

mization iteration for the dragon scene in the main text at different vertex

counts.

Large Steps Ours Overhead Vertex Count

148.52ms 152.52ms 2.69% 10242
163.52ms 168.87ms 3.27% 34789
189.41ms 207.11ms 9.34% 166103

reconstructions. Similarly, as 𝜎𝑑 decreases, edges are more well-
preserved at the cost of more noise and vice versa.

For mesh recovery, our method inherits the Laplacian smoothing
weight 𝜆 from Large Steps and introduces an additional𝜎𝑑 to prevent
smoothing over edges. We show inverse mesh recovery of the cube
scene over different values of 𝜆 and 𝜎𝑑 in Fig. 2. Like Large Steps,
low values of 𝜆 can introduce non-uniformities in the recovery,
while larger values can smooth over edges. When 𝜎𝑑 is small, the
smoothing is reduced at the edges, which can cause cracks due to
aggressive silhouette gradient updates, as discussed by Nicolet et al.
[2021]. As 𝜎𝑑 increases, our method approaches Large Steps. We
find 𝜎𝑑 around 0.5 to be a reasonable default.

4 SPATIAL BIAS

For grid-based applications, ourmethod trades offMonte Carlo noise
in the gradient with spatial smoothing bias. As discussed in the main
text, even though this biases the gradients in the sense that each
filtered partial derivative no longer matches the true derivative in
expectation, our filter is a positive semi-definite preconditioner, and
will thus still decrease or maintain the loss on average. In extreme
cases like when recovering high frequency textures (Figure 4) or
high frequency volumes (Figure 5), spatial filtering can cause over-
smoothed results. In these cases, it may help to start optimization
with our method and progressively update the filtering parameters
so that our method approaches Adam near the end to reconstruct
the high frequency details.

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan.

4 • Wesley Chang, Xuanda Yang, Yash Belhe, Ravi Ramamoorthi, and Tzu-Mao Li

0.5

0.05

0 120

Hausdor� distance vs iterations

di
st

an
ce

iterations

re
fe

re
nc

e

9
19

29

0.5 10.05

Fig. 2. Mesh hyperparameter ablationWe compare mesh recovery at differ-

ent values of 𝜆 (smoothing weight) and 𝜎𝑑 (edge-preservation data weight)

and show both visual results and Hausdorff (geometric) distance. Scene

adapted from Kloppenheim 06 ©Greg Zaal.

For mesh recovery, our method inherits the spatial bias from
smoothing the gradients using Large Steps, which is shown to be
crucial to recover geometry [Nicolet et al. 2021]. Due to the smooth-
ing, it can be challenging for both our method and Large Steps to
converge to high frequency geometry, especially when the smooth-
ing weight is high. Figure 6 shows an extreme case of recovering the
cube scene with 𝜆 = 999. While our bilateral filter can form edges
faster than Large Steps, both do not converge within a reasonable
number of iterations. Similar to the grid-based applications, it may
help to decay the smoothing weight over optimization to recover
fine details.

REFERENCES

Lukas Balles and Philipp Hennig. 2018. Dissecting Adam: The Sign, Magnitude and
Variance of Stochastic Gradients. https://openreview.net/forum?id=S1EwLkW0W

Yash Belhe, Bing Xu, Sai Praveen Bangaru, Ravi Ramamoorthi, and Tzu-Mao Li. 2024.
Importance Sampling BRDF Derivatives. ACM Trans. Graph. 43, 3 (2024).

Wesley Chang, Venkataram Sivaram, Derek Nowrouzezahrai, Toshiya Hachisuka, Ravi
Ramamoorthi, and Tzu-Mao Li. 2023. Parameter-space ReSTIR for Differentiable
and Inverse Rendering. In SIGGRAPH Conference Proceedings. 10 pages.

Peyman Milanfar. 2013. Symmetrizing Smoothing Filters. SIAM Journal on Imaging
Sciences 6, 1 (2013), 263–284. https://doi.org/10.1137/120875843

Baptiste Nicolet, Alec Jacobson, and Wenzel Jakob. 2021. Large Steps in Inverse Ren-
dering of Geometry. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 40, 6 (2021).

Merlin Nimier-David, Thomas Müller, Alexander Keller, and Wenzel Jakob. 2022. Un-
biased Inverse Volume Rendering with Differential Trackers. ACM Trans. Graph.
(Proc. SIGGRAPH) 41, 4, Article 44 (2022), 20 pages.

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan.

https://openreview.net/forum?id=S1EwLkW0W
https://doi.org/10.1137/120875843

Supplementary Document: Spatiotemporal Bilateral Gradient Filtering for Inverse Rendering • 5

F=5 F=7F=3
rendering

=0
.0

1
dσ

=0
.1

dσ
=1

dσ

recovered textureabsolute error
F=5 F=7F=3 F=5 F=7F=3

reconstruction loss (relative L2 w.r.t reference)
 vs iterations

10
-2

10
8

6

4

2

0 20 40 60 80 100

0.
01

dσ 0.
1

1

5 73
F

Fig. 3. Texture hyperparameter ablation.We compare the inverse texture recovery from Figure 5 of the main text at different values of 𝐹 (filter size) and

𝜎𝑑 (edge-preservation weight). We show the rendered image, image error, recovered roughness texture, and loss plots. These parameters trade off spatial

smoothing bias with noise in the recovery. Scene adapted from At the Window ©Bernhard Vogl.

(b) low-pass filter
(laplacian smoothing)

(d) cross-bilateral
filter (ours)

(a) adam (e) reference

0.2

0

0

1

(c) bilateral filter
(ours)

re
nd

er
in

g
ab

so
lu

te
 e

rr
or

re
co

ve
re

d
te

xt
ur

e

0 20 40 60 80 100
iterations

2

3

4

6

10
-2

lo
ss

reconstruction loss (relative L2 w.r.t reference) vs iterations

adam (several hyperparams)
low-pass filter (laplacian smoothing)
bilateral filter (ours)
cross-bilateral filter (ours)

Fig. 4. Bias in high-frequency texture recovery.We keep the same setup at Figure 5 from the main text, only replacing the roughness texture with high

frequency noise (importantly, we use the same hyperparameters). Since high frequency noise is not piecewise-smooth, both our method (d) and bilateral

filtering (c) have larger error than Adam (a), which optimizes each parameter independently; low-pass filtering (b) oversmooth s the result the most and has

highest error. Scene adapted from At the Window ©Bernhard Vogl.

1 10 40 100 200 290 absolute error
for recoveryreference

cr
os

s-
bi

la
te

ra
l

fil
te

r
(o

ur
s)

ad
am

iterations
0 200 300

lo
ss

reconstruction loss (L2) vs iterations

100

1

10
-4 adam

cross-bilateral filter (ours)

100

10

Fig. 5. Bias in low-noise volume recovery.We show an extreme case of volume recovery of density 𝜎𝑡 and high frequency albedo 𝜌 at high sample counts

(512 spp primal, 128 spp grad). At such high sample counts, the gradients have little noise, and so Adam can recover the details well, while our spatial filtering

causes some oversmoothing, especially at the earlier stages of the optimization. Even in the final result, Adam is able to better resolve the dark regions (red

arrow) than our method which oversmooths. Scene adapted from Autumn Field ©Jarod Guest and Sergej Majboroda, and High-Res Smoke Plume ©JangaFX.

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan.

6 • Wesley Chang, Xuanda Yang, Yash Belhe, Ravi Ramamoorthi, and Tzu-Mao Li

la
rg

e
st

ep
s

initialization 100 200 300 reference

ou
rs

lo
ss

iterations0
6

300

15

loss (L1) vs iterations
10

-3

large steps

ours

large steps

ours

Hausdor� distance vs iterations

0.2

0.6

iterations0 300

di
st

an
ce

8

Fig. 6. Bias in mesh recovery.We keep the same setup at Figure 10 from the main text, but set the smoothing weight 𝜆 to be extremely large (= 999). As a
result, both our method and Large Steps greatly oversmooth the gradient, resulting in a very uniform step across all vertices. Both therefore struggle to form

the edges required in the cube in a reasonable number of iterations. Scene adapted from Kloppenheim 06 ©Greg Zaal.

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan.

	1 Prefiltering and postfiltering
	1.1 Analysis with no temporal filtering
	1.2 Postfiltering is adaptive to noise.
	1.3 Postfiltering mt and vt keeps the update step bounded

	2 Overhead for our method
	3 Hyperparameter Ablations
	4 Spatial Bias
	References

