
Spatiotemporal Bilateral Gradient Filtering for Inverse Rendering

WESLEY CHANG
∗
, University of California San Diego, USA

XUANDA YANG
∗
, University of California San Diego, USA

YASH BELHE
∗
, University of California San Diego, USA

RAVI RAMAMOORTHI, University of California San Diego, USA

TZU-MAO LI, University of California San Diego, USA

observation recovered texture (100 iters)

ours

reference

adam

(a) texture recovery (b) volume recovery

adam

ours

reference

rendering of recovery (50 iters)

(c) mesh recovery

120 iters
50 iters

large steps ours reference

large steps ours reference

rendering of recovery
adam

ours

reference

laplacian smoothing

Fig. 1. We introduce a spatiotemporal optimizer that generalizes Adam and Laplacian Smoothing (Large Steps). It applies an anisotropic cross-bilateral filter
to the gradient across space, in addition to temporal filtering (like Adam). Our cross-bilateral filter reduces gradient noise and improves conditioning for

anisotropic objectives by imposing a piecewise smoothness prior. Our method enables faster convergence and higher quality inverse rendering of (a) textures,

(b) volumes and (c) meshes at very low sample counts; all experiments only use 1 sample per pixel for gradient estimation. (a) For roughness texture recovery

after 100 iterations, our method has converged while others have artifacts. (b) For volume density and albedo recovery in just 50 iterations, our method

can already recover the rough shape and color; further optimization with higher sample counts recovers details. (c) For mesh recovery our method is able

to recover sharp features (top row, cube) and thin structures (bottom row, dragon) faster than competing methods. Scenes adapted from At the Window
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In inverse rendering, gradient-basedmethods, which have seen great progress
in the recent years, are typically used in conjunction with the Adam opti-
mizer. While Adam usually improves convergence by temporally filtering
gradients over previous iterations to reduce noise, it is not tailored to inverse
rendering where the target signals (textures, volumes, or geometry) are
usually piecewise smooth. Previous work has applied the inverse Laplacian
operator to smooth gradients spatially, but this isotropic filtering can often
lead to oversmoothing.We propose a spatiotemporal optimizer that can signif-
icantly speedup the convergence over Adam, by enforcing the optimization
parameter updates to be piecewise smooth through a lightweight spatial do-
main cross-bilateral filter. We discuss different options of combining spatial
filtering and Adam’s temporal filtering, and provide intuitions for different
scenarios. We show that our filtering leads to significantly higher-quality
reconstructions in different inverse problems including texture, volume and
geometry recovery.
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1 INTRODUCTION

Gradient-based optimization has enabledmany inverse rendering ap-
plications such as texture, volume, and geometry recovery from ob-
served images. With a few exceptions, most inverse rendering works
use the Adam optimizer [Kingma and Ba 2015] to process gradients
and update optimization parameters. In this work, we show that we
can significantly speedup Adam and other prior work [Nicolet et al.
2021; Osher et al. 2018] over a wide range of inverse rendering tasks,
by applying edge-aware spatial filtering, such as a lightweight cross
bilateral filter [Eisemann and Durand 2004; Petschnigg et al. 2004]
at each iteration, as seen in Figure 1.
Adam can be seen as a temporal filter that rescales the gradient

component-wise based on its value from previous iterations. This
has twomajor benefits: first, when the gradient is noisy, due to either
the stochastic evaluation of the objective function and its gradient
or minibatching, temporal filtering reduces noise. Second, it adjusts
the learning rate per component to use faster learning rates on
gradient components that change slower over time, and vice versa.
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However, the per-component adjustment alone is insufficient either
when the gradient is highly noisy, or when the loss landscape is
highly anisotropic — causing the scales of the gradient components
to differ greatly. As a result, it often recovers signals with spurious
high frequencies.

Our work builds on the idea that spatially filtering gradients can
significantly speedup optimization [Nicolet et al. 2021; Osher et al.
2018; Renka 2006]. The idea is that if the final target is spatially
smooth, enforcing parameter updates to be spatially smooth as
well improves convergence. However, existing work always applies
isotropic spatial filters, posed as an inverse Laplacian operator, which
can oversmooth the gradient, substantially hurting convergence
when the target has strong edges.

To preserve edges in the target, we instead apply a cross-bilateral
filter, which applies a strong filter to the gradients at the smooth
regions of the recovered signal, and applies a weak filter to the
gradients around the sharp features. Our recovered signal is then
piecewise smooth [Field 1994], as opposed to the noisy results ob-
tained fromAdam or the oversmoothed ones using isotropic filtering.
Combining cross bilateral filtering with Adam leads to a few design
decisions that lead to significantly different results: spatial filtering
can be done before or after temporal filtering, and different parame-
ters can be used to filter different states in Adam. We analyze and
discuss different scenarios, and provide intuitions on how spatial
filtering and Adam should be combined.
Our optimizer has the following key features:

• It generalizes Adam and Laplacian Smoothing to anisotropic
spatiotemporal filtering.
• With high-noise gradients, it recovers higher quality solutions
in fewer iterations.
• With low-noise gradients, its non-diagonal preconditioning
enables faster convergence.
• The intermediate recoveries are piecewise smooth, making it
better suited to early stopping.
• It is widely applicable to inverse recovery including textures,
volumes, and meshes.

2 RELATED WORK

Gradient-based optimization. Choosing the right step size for the
classical (stochastic) gradient descent method [Robbins and Monro
1951] is difficult. Second-order methods like Newton’s method pro-
vide the step size adjustment, but computation of the Hessian ma-
trix is expensive, and when the gradient is noisy, the Hessian can
also be noisy and nullify the benefit of Newton’s method. Thus,
adaptive methods [Duchi et al. 2011; Tieleman and Hinton 2012]
have been proposed to efficiently adjust per-component step sizes.
Adam [Kingma and Ba 2015] combines ideas from previous adaptive
methods, it uses exponential moving averages to update both the
first and second moment of the gradient, using the latter to adjust
step sizes. Many variants of Adam have been proposed for deep
learning tasks, further discussed by Liu et al. [2024] and Chen et al.
[2024]. We focus on Adam, but our idea is conceptually compatible
with other variants.

Our work is highly-related to the idea that spatially filtering the
gradient can also serve as a step size adjustment scheme, enforcing

the parameters to evolve at similar rates spatially (sometimes known
as “Sobolev gradient descent”) [Jung et al. 2009; Osher et al. 2018;
Renka 2006; Renka and Neuberger 1995] . The same idea also has
been applied to inverse rendering recently [Nicolet et al. 2021].
These works use the inverse Laplacian operator as the spatial filter,
which can lead to slow convergence at sharp regions of the recovered
signal.We show that a cross bilateral filter can converge significantly
faster, and discuss the combination of spatial filtering and Adam.
Some work proposed to learn a preconditioner to process gradi-

ents for speeding up optimization (e.g., [Andrychowicz et al. 2016;
Li et al. 2020, 2023]). Our spatialtemporal filter does not require any
training and can be applied to a wide range of tasks. Nevertheless,
it could be interesting to combine both methods.

Variance reduction in differentiable rendering. Gradient-based op-
timization for inverse rendering (e.g., [Azinović et al. 2019; Blanz
and Vetter 1999; Gkioulekas et al. 2013; Li et al. 2018]) often relies
on stochastic computation of the gradient, since physically-based
rendering often relies on Monte Carlo integration [Pharr et al. 2016].
However, high variance in gradients can impede the progress of
optimization. Thus, a large body of work has been proposed to
reduce their variance, usually by designing specialized estimators
for them [Bangaru et al. 2020; Belhe et al. 2024; Chang et al. 2023;
Nimier-David et al. 2022; Yu et al. 2022; Zeltner et al. 2021; Zhang
et al. 2021a, 2020, 2021b]. In optimization, stochastic variance re-
duced gradient [Johnson and Zhang 2013] and related ideas [Roux
et al. 2012; Shalev-Shwartz and Zhang 2013] that apply control vari-
ates to reduce variance of mini-batches have shown asymptotically
faster convergence rates for some loss functions.
Our work is complementary to these approaches and can take

gradients produced by these methods as input. We provide further
variance reduction by spatially filtering the gradients.

Edge-aware filtering. Our work builds on the recent success on
the design of image filters that preserve edges while smoothing out
noise (e.g., [Barron and Poole 2016; Buades et al. 2005; Paris and
Durand 2009; Tomasi and Manduchi 1998]). Originally an expensive
filtering operation, after decades of research, edge-aware filtering
can now be done in real-time [Chen et al. 2007; Gastal and Oliveira
2012; He et al. 2013; Liu et al. 2020] and is often used in real-time
rendering for denoising [Bauszat et al. 2011; Dammertz et al. 2010;
Koskela et al. 2019; Schied et al. 2017]. It has also been shown to be
helpful for mesh smoothing [Jones et al. 2003; Solomon et al. 2014].
We apply a cross-bilateral filter [Eisemann and Durand 2004;

Petschnigg et al. 2004] to the gradient using the current recovered
signal as a guide. To speedup the computation for images and vol-
umes, we apply the edge-avoiding À-trous filter [Dammertz et al.
2010]. For meshes, we use Solomon et al. [2014]’s variant.

Piecewise smoothness in natural signals. A key assumption of our
work is that we are recovering a piecewise-smooth signal. This ob-
servation stems from earlier studies on natural image priors [Field
1994; Torralba and Oliva 2003], which suggest that the distribution
of the spatial gradients of natural images tends to be heavy-tailed.
These distributions typically lead to piecewise smooth images with
a few strong gradients along the edges, and many small gradients
across the smooth regions. Prior work incorporates this prior for
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image reconstruction [Krishnan and Fergus 2009; Rudin et al. 1992;
Simoncelli and Adelson 1996]. In particular, image denoising is a
good universal prior for image reconstruction [Romano et al. 2017].
We instead enforce piecewise smoothness on the gradient, using an
edge-aware filter with the recovered signal serving as a guide for
the edges. When combined with early stopping [Yao et al. 2007],
that stops the optimization before convergence, our optimizer can
be used as a prior to prefer piecewise-smooth solutions.

3 BACKGROUND AND MOTIVATION

3.1 Gradient-based Optimization

Given an objective function 𝑓 : R𝑛 → R, the goal of optimization
is to find the parameters 𝜃 that minimize (or maximize) 𝑓 (𝜃 ). If 𝑓
is differentiable, we can minimize it using gradient-based methods
that utilize the gradient ∇𝜃 𝑓 . The simplest form of gradient descent
minimizes 𝑓 by updating the parameters iteratively in the direction
of the negative gradient:

𝜃𝑡+1 = 𝜃𝑡 − 𝛼∇𝜃 𝑓𝑡 , (1)

where 𝛼 is the learning rate, and 𝑡 is the iteration number.
This form of gradient descent is however, not always feasible, nor

the most efficient. First, in many optimization problems, including
many inverse problems in graphics, the true gradient ∇𝜃 𝑓 is often
expensive to compute. Instead it is replaced by a noisy, stochastic
estimate of the gradient. This form of stochastic gradient descent can
still converge [Robbins and Monro 1951], but noisy gradients often
greatly reduce convergence speed. Second, it is well known that
the negative gradient, which points in the direction of the steepest
descent, is not always the best descent direction. For example, if
𝑓 is quadratic, then the optimal direction is instead the negative
gradient multiplied by the inverse Hessian:−𝐻−1∇𝜃 𝑓 , which if used,
would reach the global minimum in one iteration. In general, if 𝑓 is
anisotropic, that is the scales of the parameters differ in different
dimensions, it can help to precondition by a matrix 𝑃−1:

𝜃𝑡+1 = 𝜃𝑡 − 𝛼𝑃−1∇𝜃 𝑓𝑡 , (2)

which reduces the condition number and anisotropy of 𝑓 , accelerat-
ing convergence [Faragó and Karátson 2002]. Additionally, as long
as 𝑃−1 is positive definite, −𝑃−1∇𝜃 𝑓𝑡 remains a descent direction.1

3.2 Adam

The Adam optimizer [Kingma and Ba 2015] attempts to address
the issues of gradient noise and anisotropy by filtering gradients
temporally across iterations. See Algorithm 1 for the Adam update
rule. Note we omitted the bias correction terms for brevity.

Algorithm 1. Adam Update

1 𝑔𝑡 ← ∇𝜃𝑡 𝑓
2 𝑚𝑡 ← 𝛽1𝑚𝑡−1 + (1 − 𝛽1 )𝑔𝑡
3 𝑣𝑡 ← 𝛽2𝑣𝑡−1 + (1 − 𝛽2 )𝑔2𝑡
4 𝜃𝑡+1 ← 𝜃𝑡 − 𝛼

𝑚𝑡√
𝑣𝑡 + 𝜀

1𝑥 is a descent direction if −∇𝜃 𝑓 𝑇 𝑥 > 0. Since 𝑃−1 is positive definite,
(−∇𝜃 𝑓 𝑇 ) (−𝑃−1∇𝜃 𝑓 ) > 0, therefore, −𝑃−1∇𝜃 𝑓 is a descent direction.

Adam keeps an exponential moving average of the gradient,𝑚𝑡 ,
which reduces the noise of the gradient while acting as a momen-
tum that accelerates optimization [Goh 2017; Pedregosa 2023]. It
also does the same for the square of the gradient, 𝑣𝑡 , and𝑚𝑡/

√
𝑣𝑡

multiplied by the learning rate 𝛼 becomes the update step. The expo-
nential moving average𝑚𝑡 (or 𝑣𝑡 ) can be seen as a form of temporal
filtering of 𝑔𝑡 (or 𝑔2𝑡 ), where 𝛽1 (or 𝛽2) controls the filtering strength.
Crucially, the ratio𝑚𝑡/

√
𝑣𝑡 informally measures the signal-to-noise

ratio in the gradient, which helps the optimization by reducing the
step size of the parameter update when its gradient is very noisy or
the function is very anisotropic.
However, this per-parameter filtering and division by √𝑣𝑡 is

a form of diagonal preconditioning, which assumes no correla-
tions across the parameters 𝜃 . This means that each component
of 𝜃 evolves independently over optimization, resulting in high
frequency artifacts if: a) gradients are very noisy, b) 𝑓 is highly
anisotropic or c) optimization is terminated early. Figure 2 and Fig-
ure 3 show numerical examples that demonstrate these phenomena.
We aim to address these remaining issues (slow convergence and
high frequency artifacts) for problems where we can efficiently
compute more than just a diagonal preconditioner by exploiting
parameter correlations.

4 METHOD

In many problems in graphics, there is a natural notion of spatial
coherence: the pixels in an image, texels in a texture, voxels in a
volume, and vertices in a mesh, are often all correlated to their
spatial neighbors. We exploit this spatial coherence to design an
optimizer that generalizes Adam’s temporal filtering to anisotropic
spatiotemporal filtering across parameters (Section 4.1). At each
iteration, our optimizer spatially filters gradients to be piecewise
smooth, and therefore biases intermediate solutions toward piece-
wise smoothness. We also show that previous work employing
Laplacian smoothing as a gradient preconditioner is a special case
of our framework, obtained by restricting the spatial filter to an
isotropic filter (Section 4.3).

4.1 Anisotropic spatiotemporal filtering

Algorithm 2. Our Spatiotemporal Update

1 𝑔𝑡 ← ∇𝜃𝑡 𝑓
2 𝑔𝑡 ← filter(𝑔𝑡 ) # Prefilter
3 𝑚𝑡 ← 𝛽1𝑚𝑡−1 + (1 − 𝛽1 )𝑔𝑡
4 𝑣𝑡 ← 𝛽2𝑣𝑡−1 + (1 − 𝛽2 )𝑔2𝑡
5 �̃�𝑡 ← filter(𝑚𝑡 ) # Postfilter
6 �̃�𝑡 ← filter(𝑣𝑡 ) # Postfilter

7 𝜃𝑡+1 ← 𝜃𝑡 − 𝛼
�̃�𝑡√
�̃�𝑡 + 𝜀

Algorithm 2 describes our method2. It extends Adam’s temporal
gradient filtering by applying up to three spatial filters: a "prefilter"
on 𝑔𝑡 before the exponential moving averages, and two "postfilters"
(on𝑚𝑡 and 𝑣𝑡 respectively) after the exponential moving averages,
resulting in a spatiotemporal filter. In our grid-based applications

2To correct for bias, after postfiltering set �̃� ← �̃�/(1 − 𝛽𝑡1 ) and �̃� ← �̃�/(1 − 𝛽𝑡2 ) .
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(a) gradient descent (b) adam (c) low-pass filter (laplacian smoothing) (d) cross-bilateral filter (ours) (e) reference

0 5 50 250 500 5kiteration:

Fig. 2. Anisotropic objective with zero noise in gradients. Here, we optimize an anisotropic objective function 𝑓 (𝜃 ) = (𝜃 − 𝜃∗ )𝑇A𝑇A(𝜃 − 𝜃∗ ) . Each
element of A is drawn from a standard normal distribution. The reference 𝜃∗ ∈ R1000 (e) is piecewise smooth. The gradients ∇𝜃 𝑓 have zero noise. We use four

different optimizers (with individually tuned hyperparameters). (a) Gradient descent cannot find a global learning rate that works well for all parameters. (b)

Adam estimates learning rates for each dimension independently, resulting in high frequency fluctuations. (c) Applying Laplacian Smoothing over space (𝜃 )

after Adam’s temporal smoothing results in a much smoother parameter trajectory over time; however, it oversmooths edges. (d) Our cross-bilateral filter

preconditions the high frequency gradients (resulting from anisotropy) to much lower frequency ones, while also preserving edges due to the edge-aware filter.

It converges near edges much faster (250 iterations) as compared to the others which are unable to do so even after 5000 iterations.

0 5 50 250 500 5kiteration:

(a) gradient descent (b) adam (c) low-pass filter (laplacian smoothing) (d) cross-bilateral filter (ours) (e) reference

Fig. 3. Isotropic objective with noisy gradients. Here, we examine the effect of noisy gradients for optimization of isotropic objective 𝑓 (𝜃 ) = ∥𝜃 − 𝜃∗ ∥2 with
piecewise smooth 𝜃∗ (see reference (e)). We simulate noisy gradients by adding zero mean Gaussian noise. Here too, we optimally tune all hyperparameters

for the four optimizers. (a) Despite the simple isotropic loss, gradient descent isn’t able to converge to the right solution due to noisy gradients. (b) This

problem persists with Adam too, however, the temporal filtering reduces the noise compared to (a). (c) Laplacian Smoothing over-smoothes the edges and is

unable to recover them well. (d) Our cross-bilateral filter denoises the gradients well, while preserving edges enabling piecewise-smooth recovery.

detailed in Section 5.1, we find applying only the postfilters to per-
form the best (Figure 8), while the exact set of filters used in our
mesh application is described in detail in Section 5.2. We analyze
the differences between pre- and post-filtering in detail in the appli-
cations and supplementary materials. Similar to the temporal filter,
the spatial filters also reduce noise in the gradient by smoothing the
gradient using information from spatial neighbors.
Although our framework is not restricted to particular types of

filters, we analyze the use of the cross-bilateral filters [Eisemann
and Durand 2004; Petschnigg et al. 2004] in this work. In particular,
our filter function is:

ℎ̃(𝑥) = 1
𝑧 (𝑥)

∫
Ω
ℎ(𝑦)𝑤𝑠 (𝑥,𝑦)𝑤𝑑 (𝜃 (𝑦), 𝜃 (𝑥)) d𝑦, (3)

where ℎ is the function to be filtered, Ω is the spatial domain,𝑤𝑠 is
a spatial isotropic low-pass filter,𝑤𝑑 is the data term that prevents
smoothing across discontinuities, and 𝑧 (𝑥) is the normalization
term3. For our grid-based applications,𝑤𝑠 and𝑤𝑑 are:

𝑤𝑠 (𝑥,𝑦) = exp
(
− ||𝑥 − 𝑦 | |

𝜎𝑠

)
, 𝑤𝑑 (𝜃𝑥 , 𝜃𝑦) = exp

(
−
||𝜃𝑥 − 𝜃𝑦 | |

𝜎𝑑

)
,

(4)

where 𝜎𝑠 and 𝜎𝑑 control the scale of the weights. For our mesh
application, we instead use the generalized bilateral filter method
from Solomon et al. [2014], which we discuss in Section 5.2.

Our cross-bilateral filter filters gradients ∇𝜃 𝑓 spatially, using their
parameter values 𝜃 to prevent over smoothing across edges in the

3𝑧 (𝑥 ) =
∫
Ω
𝑤𝑠 (𝑥, 𝑦)𝑤𝑑 (𝜃 (𝑦), 𝜃 (𝑥 ) ) d𝑦.

parameters. Conversely, a standard bilateral filter would filter gra-
dients using the gradient values for edge stopping. Using a cross-
bilateral filter instead of a standard bilateral filter is key, since not
only are parameter values less noisy than their gradients, but are
also often in a lower dynamic range than them. Figure 4 (c) and
(d) show a comparison between these two for a texture recovery
example. For all filtering operations, we use the same parameters 𝜃
for the data term𝑤𝑑 . This is critical for postfiltering, since it ensures
our method makes bounded steps, like Adam (proof in Suppl. Sec.
1.3). Violating this significantly degrades recovery, see Section 5.1.
Since our method directly filters gradients and moments, it requires
the same storage as Adam.
Our filter when applied as a preconditioner to the gradient can

be written as matrix-vector product (𝐷−1𝐾)∇𝜃 𝑓 (e.g., [Milanfar
2012]). Here, 𝐾 is a symmetric positive definite affinity matrix ac-
counting for𝑤𝑠 and𝑤𝑑 , and 𝐷 is a diagonal matrix accounting for
𝑧. Interestingly, even though the matrix 𝐷−1𝐾 is not symmetric, all
its eigenvalues are real, non-negative, and bounded by 1 [Milanfar
2012], justifying its use as a preconditioner. More importantly, since
𝐾 includes non-diagonal elements which capture correlations across
the parameters, our method performs non-diagonal preconditioning.

4.2 Advantages of our method

4.2.1 Noise removal. In the image processing community, cross-
bilateral filtering is known for its effectiveness at removing noise,
while preserving sharp boundaries. For optimization, compared
to Adam, cross-bilateral filtering is much more efficient at noise
removal in the gradient, and compared to isotropic low-pass filters,
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(a) noisy gradient
(16 spp primal, 1spp grad)

(c) bilateral filter
(ours)

(b) low-pass filter
(laplacian smoothing)

(d) cross-bilateral
filter (ours)

(e) reference

1e-6

-1e-6

Fig. 4. Denoising with spatial filters.We denoise noisy gradients (a) (from

Fig. 5) using spatial filtering only. The reference (e) is purely positive (blue),

so all negative regions (red) have the wrong sign, which hurts optimization.

(b) The low-pass filtering reduces noise but blurs over fine structures in the

gradient at the bottom. (c) Our bilateral filter preserves these fine structures

but still has some noise. (d) Our cross-bilateral filter not only preserves the

fine structures, it does so while significantly reducing noise in the gradient.

it does not pollute gradients between parameters that are very
different (Figure 3). Practically, noise removal improves the signal-
to-noise ratio resulting in faster convergence, see Section 5.

4.2.2 Non-diagonal preconditioning. We have found our method’s
non-diagonal preconditioning be helpful for anisotropic objectives
with parameter correlations. To isolate the effect of noise removal
from the effect of better preconditioning, we construct a numerical
example with noise-free gradients in Figure 2. Despite the gradients
being noise-free, Adam struggles to handle the strong anisotropy,
whereas our method with its non-diagonal preconditioning con-
verges in a much smoother manner.

4.2.3 Piecewise smoothness prior. Our cross-bilateral filter precon-
ditions gradients to be piecewise smooth. This results in an opti-
mization trajectory with piecewise smooth intermediate solutions
(Figures 2 and 3). Thus, applying early stopping [Yao et al. 2007]
with our method is preferable, since the piecewise smooth solutions
it prefers align well with natural signals (Section 2).

4.3 Relation to Laplacian Smoothing

Previous work has applied Laplacian smoothing to the gradients [Os-
her et al. 2018; Renka 2006]. Nicolet et al. [2021] further combined
this with Adam to smooth out the sparse gradients in inverse ren-
dering of meshes. These methods apply a preconditioner of the form
(𝐼 +𝜆𝐿)−1, where 𝐿 is the Laplacian matrix and the scalar 𝜆 controls
smoothing strength. This has the effect of applying an isotropic
spatial filter. Precisely, it is well-known (e.g., [Bhat et al. 2008]) that
the screened Poisson equation has a closed-form solution in 2D and
3D Euclidean domains. In 2D, the solution is a convolution with a
kernel 1

2𝜋𝜆𝐾0 (2𝜋
√︃

1
𝜆

(
𝑥2 + 𝑦2

)
) where 𝐾0 is the zeroth order modi-

fied Bessel function of the second kind, which has the approximate
shape of 𝑒−𝑟 /𝑟 where 𝑟 =

√︁
𝑥2 + 𝑦2 . Our spatial smoothing term𝑤𝑠

is of the form 𝑒−𝑟 , highly-related to Laplacian Smoothing.

Similar to our method, Laplacian Smoothing reduces noise and
sparsity in the gradients, as well as anisotropy in 𝑓 . Since it promotes
smooth gradients, Laplacian Smoothing rapidly converges when
the target is smooth. However, for piecewise smooth targets, it is
slow to converge near edges, due to oversmoothed gradients. Our
spatial filter is edge-aware due to the data term𝑤𝑑 , which prevents
over-smoothing, see Figures 2 and 3.
For meshes, several works have additionally applied different

discrete Laplacian operators. Dou et al. [2024] use the cotangent
Laplacian for micro-mesh construction, but this has shown limited
benefits in inverse rendering of standard meshes [Nicolet et al. 2021].
An et al. [2023] propose to adaptively set the smoothing kernel size
𝜎𝑠 to help preserve high frequency features. However, this is still
fundamentally an isotropic filter and is thus orthogonal to our work.

5 APPLICATIONS

We apply our method to inverse recovery of textures, volumes and
meshes. For textures and volumes (Section 5.1), we recover param-
eters on a regular grid (2D texture and 3D voxel grid). For mesh
recovery, we optimize vertex positions, which necessitates the use
of a different bilateral filter [Solomon et al. 2014]. We discuss it and
our connection with previous work for mesh optimization [Nicolet
et al. 2021] in Section 5.2. We also analyze the hyperparameters
introduced by our method in Section 3 of the supplemental and bias
in Section 4 of the supplemental.

5.1 Grid-based applications

Our optimizer enables higher quality inverse recovery with low
sample budgets, all while requiring fewer iterations for convergence.
To ensure optimization is fast, spatial filtering must be fast too. We
leverage previous work in real-time denoising [Dammertz et al.
2010] and implement our cross-bilateral filter as a series of à-trous
filters. We discuss further details including the overhead introduced
by our method in the following paragraphs. After that, we present
recovery results for inverse recovery of textures and volumes.

À-trous cross-bilateral filtering of gradients. Depending upon the
application, the gradient ∇𝜃 𝑓𝑡 and its associated buffers 𝑚𝑡 and
𝑣𝑡 , are defined on regular 2D or 3D grids. We implement spatial
filtering by applying a sequence of À-trous cross-bilateral filters,
each with an increasing support but a fixed number of non-zero
elements, similar to Dammertz et al. [2010]. In particular, at each
step we use a dilated 3x3 filter for 2D filtering (or a 3x3x3 filter in
3D). The number of filters 𝐹 in the sequence indirectly specifies 𝜎𝑠 .

Performance. We implement our optimizer in PyTorch [Paszke
et al. 2019] with a custom cross-bilateral filtering CUDA kernel writ-
ten in Slang [Bangaru et al. 2023; He et al. 2018]. All of our inverse
rendering experiments were conducted using Mitsuba 3 [Jakob et al.
2022] on an NVIDIA GeForce RTX 3080 GPU. Our method intro-
duces little overhead (< 4%) for both 2D and 3D filtering (Table 1 in
supplemental), so all comparisons are equal-iteration.

Baselines. We compare our optimizer (with postfiltering only) to
the two techniques we generalize: Adam and Laplacian Smoothing.
We also demonstrate the benefit of using a cross-bilateral filter over
a standard bilateral filtering with an ablation. We tune the following
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Fig. 5. Inverse texture recovery. We attempt to recover the roughness texture of a metallic plate from a single reference image (e) using noisy gradients (16

samples per pixel for primal and 1 sample per pixel for gradient). To find the optimal hyperparameters for Adam, we performed a grid search over the learning

rate: 0.001, 0.01, 0.05 and 𝛽1 : 0.2, 0.5, 0.9, and show recovery for the best result (𝛼 = 0.01 and 𝛽1 = 0.2) . (a) Adam is unable to converge in several regions

(see arrows). (b) Laplacian Smoothing fares better in these regions, but still has high error in others (see error image). (c) Our bilateral filter improves upon

Laplacian Smoothing (compare error images). (d) Our cross bilateral filter is able to match the reference the closest, both in terms of loss and the quality of

recovered texture. On the right, we see that the loss curve follows the qualitative trends we discussed above; each different component added to our method

helps improve recovery. Scene adapted from At the Window ©Bernhard Vogl.

hyperparameters for all methods per experiment: learning rate 𝛼 ,
temporal filtering coefficient 𝛽1, data term scale 𝜎𝑑 and spatial filter
support 𝐹 .
We set 𝛽2 satisfying 1 − 𝛽1 =

√︁
1 − 𝛽2. Lower values of 𝛽1 and

𝛽2 reduce temporal filtering in𝑚𝑡 and 𝑣𝑡 . While this decreases bias
accumulated in 𝑚𝑡 and 𝑣𝑡 from previous iterations, it increases
noise in them. Our experiments use low iteration counts (<200)
for fast recovery. For this setup we found all optimizers converge
fastest with low values of 𝛽1 ∈ (0.2, 0.5). This is because higher
values increase temporal bias, slowing down convergence within
the limited iteration budget, resulting in worse recovery.

5.1.1 Inverse texture recovery. We apply our method to recover the
roughness texture of a plate from a single view in Figure 5. We
use 16 samples per pixel for forward rendering and 1 sample per
pixel for the gradient. All methods except Adam use 𝛽1 = 0.2 and
𝛼 = 0.1 and; for Adam we found 𝛼 = 0.01 worked best. The texture
is a 5122 2D grid. We set 𝐹 = 5 for cross-bilateral filtering, while
𝐹 = 3 worked best for Laplacian Smoothing and standard bilateral
filtering. For the cross-bilateral filter, we use 𝜎𝑑 = 0.1 and for the
standard bilateral filter we use 𝜎𝑑 = 1; for both, we filter in the
log domain (for the standard bilateral filter, since gradients can be
negative, we take the absolute value before the logarithm).
Our cross-bilateral filter can recover the roughness texture, in-

cluding all its fine details, better than competing methods. Laplacian
Smoothing oversmooths and standard bilateral filtering is noisier
than our method. Adam has the strongest artifacts due to its inability
to filter the noisy gradients effectively.

5.1.2 Inverse volume recovery. Next, we apply our method to re-
cover the volume density 𝜎𝑡 and albedo 𝜌 from 64 rendered views
in Figures 6 and 7; at each iteration, we compute the loss for all
views. For both experiments, the grid size for 𝜌 and 𝜎𝑡 is 643. We
found 𝛽1 = 0.2 to work best for all methods. We use 𝛼 = 0.008 for
Adam and 𝛼 = 0.02 for the others. For filtering, we use 𝐹 = 3 for all

methods. For the data term we use 𝜎𝑑 = 0.001 for 𝜌 and 𝜎𝑑 = 0.2
for 𝜎𝑡 with our cross-bilateral filter; for the standard bilateral filter,
we use 𝜎𝑑 = 0.001 for 𝜌 and 𝜎𝑑 = 2 · 10−7 for 𝜎𝑡 .

We demonstrate two key benefits of our method in the two exam-
ples. First, in Figure 6, we show it can handle noisy gradients much
better than Adam (similar to our numerical example in Figure 3).
Second, in Figure 7 we show that even with much cleaner gradients,
our method’s preconditioning allows it to converge much faster
than Adam (similar to our numerical example in Figure 2).

Prefiltering and postfiltering ablation. In texture and volume re-
covery, our method uses postfiltering only. As shown in Figure 8,
with optimally tuned hyperparameters, postfiltering and prefilter-
ing perform similarly (as does applying both the postfilter and the
prefilter), but postfiltering converges slightly faster. In Section 1.2 of
the supplemental, we show postfiltering is more adaptive to noise
in the low 𝛽1 regime, which might explain its benefits.

Postfiltering𝑚𝑡 and 𝑣𝑡 . For spatial filtering, it is crucial to filter
both𝑚𝑡 and 𝑣𝑡 to ensure bounded steps at each iteration, similar to
Adam; violating this results in instability during training, see Fig-
ure 9. We show that filtering them both with the same weights
ensures bounded steps in Section 1.3 of the Supplemental.

Purely spatial filtering. Setting 𝛽1 = 𝛽2 = 0 turns off temporal fil-
tering completely. This setting is particularly interesting, because it
makes the optimizers memoryless, eliminating the need to maintain
buffers for𝑚𝑡 and 𝑣𝑡 . The resulting 2/3rd memory savings can be
useful for large-scale inverse optimization. Due to spatial filtering,
postfiltering can still dynamically adjust learning rates, unlike Adam
which makes constant sized steps, resulting in faster convergence
(see Section 1.1 and Figure 1 in Supplemental.).

5.2 Inverse rendering of meshes

In this section, we discuss the exact connection between our op-
timizer and Large Steps [Nicolet et al. 2021]. We show that their
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method can be cast into ours by selecting a specific set of filters.
We provide an ablation on the effect of different filtering decisions
and show that our method can converge faster than Large Steps for
both piecewise smooth objects and objects with thin geometry.

5.2.1 Large Steps as spatiotemporal gradient filtering. As discussed
by Nicolet et al. [2021], in inverse rendering of geometry, gradients
are heavily concentrated on the sparse silhouettes of objects. Naïvely
applying gradient descent causes local vertex perturbations that
quickly lead to flipped triangles and tangled up meshes. As a result,
Nicolet et al. [2021] propose to precondition the gradient by a matrix

of the form (𝐼 + 𝜆𝐿)−2, which is the preconditioner discussed in
Section 4.3 applied twice. However, instead of directly applying this
preconditioner on the gradients with respect to vertices x and then
performing an Adam update, they do the following:

(1) Apply a reparameterization, by letting u = (𝐼 + 𝜆𝐿)x.
(2) Compute a gradient for u as 𝜕x

𝜕u · ∇x 𝑓 , where
𝜕x
𝜕u = (𝐼 +𝜆𝐿)−1.

(3) Apply a UniformAdam update on u, which is the same as an
Adam update except the component-wise division by √𝑣𝑡 is
replaced with the component-wise max

√︁
| |𝑣𝑡 | |∞.

(4) Convert u back to x with x = (𝐼 + 𝜆𝐿)−1u.
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doubles; to compensate for this, we set 𝐹 to 𝐹/2 for each of them.
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Fig. 9. Postfiltering𝑚𝑡 and 𝑣𝑡 . Our method (Algorithm 2) postfilters both

𝑚𝑡 and 𝑣𝑡 using the same cross-bilateral filter Equation (3). Using the same

filter is essential, since this ensures |�̃�𝑡 |/
√
�̃�𝑡 < 1 in the postfiltered step is

bounded, similar to Adam which ensures |𝑚𝑡 |/
√
𝑣𝑡 < 1. Filtering only one

of𝑚𝑡 or 𝑣𝑡 violates this (see graph on right), resulting in much larger step

sizes that significantly worsen recovery (left).

Since x is a linear function of u, we can use the property that
Δx = (𝐼 + 𝜆𝐿)−1Δu to write their update in terms of x and cast it
into our framework as shown in Algorithm 3.

Algorithm 3. Large Steps Update

1 𝑔𝑡 ← ∇x 𝑓𝑡
2 ∇u 𝑓𝑡 ← (𝐼 + 𝜆𝐿)−1𝑔𝑡 # 𝜕x

𝜕u = (𝐼 + 𝜆𝐿)−1
3 𝑚𝑡 ← 𝛽1𝑚𝑡−1 + (1 − 𝛽1 )∇u 𝑓𝑡
4 𝑣𝑡 ← 𝛽2𝑣𝑡−1 + (1 − 𝛽2 )∇u 𝑓 2𝑡
5 �̃�𝑡 ← (𝐼 + 𝜆𝐿)−1𝑚𝑡 # Δx = (𝐼 + 𝜆𝐿)−1Δu
6 �̃�𝑡 ← | |𝑣𝑡 | |∞ # UniformAdam

7 x𝑡+1 ← x𝑡 − 𝛼
�̃�𝑡√
�̃�𝑡 + 𝜀

Comparing with Algorithm 2 we see that 𝜕x
𝜕u , from the chain rule

due to the reparameterization, takes the place of the prefiltering step,
while converting u back to x applies the first postfilter. The infinity
norm on 𝑣𝑡 from UniformAdam serves as the second postfilter. Thus,
Large Steps can be seen as a spatiotemporal optimizer that uses
Laplacian smoothing and an infinity norm as its filters.

5.2.2 Bilateral gradient filtering for meshes. For our method, we re-
place the postfilter on𝑚𝑡 (Algorithm 3, line 5) with a cross-bilateral
filter. To apply our cross-bilateral filter on meshes, we use the gen-
eralized bilateral filter from Solomon et al. [2014]. We use vertex
normals n̂ for the data term. We compute this filter by first sam-
pling 𝑁 = 32 directions 𝑠𝑖 ∈ 𝑆2 on the unit sphere using the Sobol

sequence [Sobol’ 1967], then computing

h̃ =

∑𝑁
𝑖=1 Φ(n̂, 𝑠𝑖 ) (𝐼 + 𝜆𝐿)−1𝑊 (n̂, 𝑠𝑖 )h∑𝑁
𝑖=1 Φ(n̂, 𝑠𝑖 ) (𝐼 + 𝜆𝐿)−1𝑊 (n̂, 𝑠𝑖 )1

, (5)

where h is the vector to be filtered, 1 is the vector of ones,𝑊𝑖 =

𝑊 (n̂, 𝑠𝑖 ) is the diagonal data matrix, and Φ𝑖 = Φ(n̂, 𝑠𝑖 ) is the di-
agonal partition of the unity matrix. Each diagonal element of𝑊𝑖

is computed using the von Mises-Fisher kernel between n̂ and 𝑠𝑖 :
exp (�̂� · 𝑠𝑖/𝜎𝑑 ), and similarly for Φ𝑖 : exp (�̂� · 𝑠𝑖/𝜎𝜙 ). Although this
filter appears to be more expensive to compute compared to sim-
ply applying Laplacian smoothing, we can compute it efficiently
with minimal overhead. This is done by concatenating all vectors
𝑊 (n̂, 𝑠𝑖 )h and𝑊 (n̂, 𝑠𝑖 )1 into a single matrix:

𝑀 =

𝑊 (n̂, 𝑠1)h 𝑊 (n̂, 𝑠𝑖 )1 · · · 𝑊 (n̂, 𝑠𝑁 )h 𝑊 (n̂, 𝑠𝑁 )1
 ,
(6)

and computing (𝐼 + 𝜆𝐿)−1𝑀 using a single matrix solve. The rest of
the filter is then computed using component-wise operations. The
overhead of our method over Large Steps is minor (< 10%, see Table
2 in supplemental).

5.2.3 Results. We implement our method in PyTorch [Paszke et al.
2019] using the Cholesky solver based on CHOLMOD [Chen et al.
2008] following Nicolet et al. [2021]. We optimize for meshes using
Mitsuba 3 [Jakob et al. 2022] with projective sampling [Zhang et al.
2023]. All experiments ran on an NVIDIA GeForce RTX 3080 GPU.

Mesh recovery. We compare our method against Large Steps on
two mesh recovery examples: a cube (Figure 10) and a dragon (Fig-
ure 11). For both examples and methods, we use 16 samples per pixel
for the forward rendering and 1 sample per pixel for the gradient.
We set 𝛼 = 1 · 10−2 for the cube, 𝛼 = 3 · 10−2 for the dragon and
𝛽1 = 0.9, 𝛽2 = 0.99 for both. We apply an exponential learning rate
scheduler that reduces the learning rate to a factor of 0.6 at the end
of the optimization. We set 𝜆 = 19. We initialize using a sphere with
approximately 10k vertices and upsample the dragon at iterations
10, 30, and 60, by remeshing to reduce the average edge length by a
factor of 2 every time. The cube does not require remeshing. We use
L1 as the loss function and optimize the cube using 10 views and
the dragon using 25 views, rendering all views at every iteration.

For our method, we follow Large Steps (Algorithm 3), except we
replace the postfilter on𝑚𝑡 with the mesh cross-bilateral filter. We
set 𝜎𝜙 = 0.4 and 𝜎𝑑 = 0.5.

The cube (Figure 10) contains sharp edges and so using our edge-
aware cross-bilateral filter is important to prevent the filtering from
smoothing over the edges. The dragon (Figure 11) on the other
hand contains less sharp edges, but also has thin structures such
as scales and horns and contains many more silhouettes. Due to
the sparse nature of silhouette gradients, gradient filtering can be
seen as a way to interpolate gradients in the interior using values
on the silhouettes. Since the silhouettes at any given viewpoint take
a form of curves along the surface, this means that vertices that
are near but not on the silhouettes receive no silhouette gradients.
As a result, Laplacian smoothing will smooth the gradients so that
these vertices do receive gradients, but this also means the gradients
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on the silhouette vertices are diluted. Thus, our method is able to
converge faster, since it helps preserve the values on the silhouettes
when there are thin structures, such as the horns of the dragon.

Prefiltering and postfiltering ablation. By casting Large Steps into
our framework shown in Algorithm 2, an interesting question arises:
what combination of filters should be used? We compare 7 differ-
ent configurations in Figure 12. In addition to the previous experi-
mental settings, we adjust the learning rate for each configuration.
Empirically, we see that both a prefilter and postfilter is needed to
provide sufficient smoothing. Interestingly, keeping the prefilter
as a Laplacian is important, as is is likely that a bilateral prefilter
is not sufficient to diffuse the silhouette gradients. We find that
applying a Laplacian prefilter and a bilateral postfilter, as well as
keeping the UniformAdam infinity norm performs the best across
both examples.

6 LIMITATIONS AND FUTURE WORK

Non-spatial parameters. Our method assumes that the parameters
exhibit piecewise smoothness spatially. It is unclear whether our
method can still be helpful when the parameters lack obvious spatial
coherence. Defining proper notion of spatial proximity to generalize
our filters would be an exciting research avenue.

Spatiotemporal hyperparameters. Our method introduces two new
hyperparameters 𝜎𝑠 (𝐹 ) and 𝜎𝑑 . Like learning rate adjustment, tun-
ing them can be tedious and recent work on hyperparameter op-
timization might be helpful [Chandra et al. 2022]. Theoretically, it
is also unclear what the ideal tradeoff between stronger temporal
filtering over spatial filtering is. Both reduce noise in the gradient,
but they introduce different biases. A deeper analysis here could
help us pick better hyperparameters.

7 CONCLUSION

We present a spatiotemporal optimizer for inverse recovery. We
enforce piecewise smooth gradients, which are well suited to natu-
ral signals. Our method enables faster convergence and improves
recovery, especially at low sample counts, without any extra storage
and with very little overhead. We believe spatiotemporal gradient
filtering can also be applied to other gradient-based optimization
methods with spatial coherence across parameters.
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