Wesley Chang

Vector-Valued Monte Carlo Integration Using Ratio Control Variates

ACM Transactions on Graphics (Proceedings of SIGGRAPH 2025)

Haolin Lu1,2, Delio Vicini3, Wesley Chang1, and Tzu-Mao Li1
1 University of California San Diego
2 Max Planck Institute for Informatics
3 Google Inc.

Description

Variance reduction techniques for Monte Carlo integration are typically designed for scalar-valued integrands, even though many rendering and inverse rendering tasks actually involve vector-valued integrands. We show that ratio control variates, compared to conventional difference control variates, can significantly reduce the error of vector-valued integration with minimal overhead.

BibTeX

@inproceedings{Lu2025VMC,
  author = {Lu, Haolin and Vicini, Delio and Chang, Wesley and Li, Tzu-Mao},
  title = {Vector-Valued Monte Carlo Integration Using Ratio Control Variates},
  year = {2025},
  issue_date = {August 2025},
  publisher = {Association for Computing Machinery},
  address = {New York, NY, USA},
  volume = {44},
  number = {4},
  journal = {ACM Trans. Graph.},
  month = aug,
  numpages = {16}
}
Follow me!

Sometimes I do cool stuff.