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Fig. 1. Vector-valued integration is ubiquitous in forward and inverse rendering. In forward rendering, the integrated radiance often differs between color
channels or wavelength due to chromatic (a) lights (Bunny illuminated by three spherical area lights with RGB radiance values of [3000, 5, 6], [3, 3000, 4], and
[4.8, 5.8, 3000]. For better visualization, we underexpose inset images), (b) BSDFs, (c) homogeneous, and (d) heterogeneous media. A common practice to
tackle this challenge is sampling the luminance or a random mixture of each wavelength, leading to obvious color noise. In inverse rendering, we estimate (e)
the vector-valued scene parameter gradient, or (f) the Hessian matrix (through a derivative-free method) for higher-order optimization. We propose a biased
but consistent estimator and its unbiased variants to mitigate the challenge of vector-valued integration. Our methods can significantly reduce the variance
with often negligible overhead, and can be easily integrated into existing forward and inverse rendering frameworks.

Variance reduction techniques are widely used for reducing the noise of
Monte Carlo integration. However, these techniques are typically designed
with the assumption that the integrand is scalar-valued. Recognizing that
rendering and inverse rendering broadly involve vector-valued integrands,
we identify the limitations of classical variance reduction methods in this
context. To address this, we introduce ratio control variates, an estimator
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that leverages a ratio-based approach instead of the conventional difference-
based control variates. Our analysis and experiments demonstrate that ratio
control variables can significantly reduce the mean squared error of vector-
valued integration compared to existing methods and are broadly applicable
to various rendering and inverse rendering tasks.

CCS Concepts: • Computing methodologies→ Rendering.

Additional Key Words and Phrases: ratio control variates, importance sam-
pling, differentiable rendering, inverse rendering

1 INTRODUCTION
Variance reduction methods in Monte Carlo integration are often de-
signed for scalar-valued integrals. However, rendering and inverse
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Fig. 2. 1D Toy Example. Given (a) two integrands [ 𝑓1, 𝑓2 ], we assume prior knowledge in the form of (b) two auxiliary functions ℎ1, ℎ2, which are roughly
proportional to their respective integrands, normalized, and can be sampled. We compare four variance reduction techniques, and (c) plot their respective
numerical error over the number of Monte Carlo samples. (d) Vector-valued importance sampling samples from a single distribution 𝑔avg (𝑥 ) that combines
both auxiliary functions. All samples are then used to evaluate both 𝑓1 and 𝑓2, but the inability of 𝑔avg to accurately represent either integrand leads to high
variance. (e) Entry-wise stratification samples separately from ℎ1 and ℎ2, with samples from each auxiliary used only for the corresponding integrand. This
improves the accuracy of sampling distribution and reduces variance, but halves the sample count per integrand (e.g., 2 instead of 4 here). (f) Difference control
variates is inefficient in this example due to the scaling relation between 𝑓 and ℎ, where 𝑓 ≈ 2ℎ. This makes the difference 𝑓 − ℎ far from constant, thereby
reducing efficiency. (g) Our ratio control variates avoids the trade-off between specialization and sample count seen in importance sampling. It also effectively
handles scaling effects, unlike difference control variates. In the third row, we demonstrate the efficiency of the estimators by visualizing the mean squared
error (MSE) as a function 𝑒 (𝑥 ) . The final MSE can be computed as𝑀𝑆𝐸 = 1

𝑁

∫
(𝑒1 (𝑥 ) + 𝑒2 (𝑥 ) ) d𝑥 , so lower 𝑒 (𝑥 ) indicates better performance.

rendering problems require solving vector-valued integrals since we
need to estimate the radiance acrossmultiple color channels or wave-
lengths, and for inverse rendering we need to estimate gradients for
multiple parameters. In this work, we analyze different Monte Carlo
estimators in the context of vector-valued integration in rendering,
and adapt ratio control variates for a wide range of vector-valued
integration problems in forward and inverse rendering.

Consider the example in Fig. 2, where we aim to estimate two in-
tegrals sharing the same domain (e.g., the two integrands represent
two of the color channels). In rendering, we are usually also given
two corresponding auxiliary functions that are roughly proportional
to our integrands (e.g., the material importance sampling probability
density functions of the two color channels). Standard importance
sampling cannot find a single sampling distribution from the auxil-
iary functions that matches both integrands well. However, using
a different distribution for each integrand, and treating the two
integrals separately, means that a light path can only contribute to
one channel, effectively doubling the computational cost.
Standard difference control variates can be easily extended for

vector-valued problems by using a different auxiliary function for
each integrand. However, difference control variates are only ef-
fective when the difference between the integrand and auxiliary
functions is nearly constant. In actual rendering applications, this is
usually not true, as the auxiliary function usually only models part
of the integrand. For example, material sampling lobes would ignore
the incoming radiance. In contrast, importance sampling remains
effective when the ratio of the integrand and the auxiliary function
is close to a constant, making it more robust.

Our key idea is to use a ratio estimator instead of the conven-
tional difference estimator in control variates. By estimating the
ratio of the integrands and the auxiliary function, our method is
invariant to the scale difference between the integrand and the
auxiliary function and shares the same robustness as importance
sampling. Additionally, as our method is a control variates tech-
nique, it naturally extends to vector-valued problems. While a basic
ratio control variates estimator is consistent but biased, we show
that it can be efficiently debiased with minimal overhead. Finally,
ratio control variates are a direct generalization of previously used
weighted importance sampling methods, as we will discuss later.
We show that our ratio control variates estimator have a wide

variety of forward and inverse rendering applications, by using exist-
ing importance sampling constructions, and only requires minimal
modification of the renderer. These applications include sampling
chromatic materials and lights and combining them using multi-
ple importance sampling, many-light sampling, global illumination,
multiple scattering in both homogeneous and heterogeneous media,
differentiable path tracing, derivative-free optimization for inverse
rendering, and evenMonte Carlo partial differential equation solvers.
Our method significantly reduces the error compared to standard
techniques with minimal computational and memory overhead.

Our technical contributions are:

• We formulate forward and inverse rendering as vector-valued
Monte Carlo integration.

1For simplicity, we use a uniform sampling distribution for both the difference and
ratio control variates. In practice, they can be combined with importance sampling.
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• We analyze standard variance reduction techniques includ-
ing importance sampling and difference control variates, and
demonstrate their issues both theoretically and empirically.

• We introduce ratio control variates, its biased and unbiased
variants for vector-valued integration, analyze its error, and
show that it is scale invariant, as opposed to standard differ-
ence control variates that is shift invariant.

• We show how to apply ratio control variates to a wide range
of rendering scenarios, and propose extensions to work with
multiple importance sampling, global illumination, and vol-
umetric scattering.

• We propose a marginal ratio control variates to handle dif-
ferentiable path tracing and reuse existing importance sam-
pling distributions.

An open-source implementation of our method is available under
https://github.com/suikasibyl/vvmc.

2 RELATED WORK
Existing variance reduction techniques for Monte Carlo integra-
tion [Owen 2013; Veach 1998] largely focus on scalar-valued estima-
tors. We review related work on variance reduction for path tracing,
inverse rendering and gradient descent, as well as ratio estimators.

Variance reduction in rendering. Practical Monte Carlo path trac-
ing [Kajiya 1986; Pharr et al. 2023] relies on the use of analytical
importance sampling distributions [Arvo 1995; Dupuy and Benyoub
2023; Eto and Tokuyoshi 2023; Heitz 2018; Lin and Yuksel 2020;
Miller et al. 2019; Novák et al. 2018; Ureña et al. 2013]. Recently,
methods that progressively refine sampling distributions [Bitterli
et al. 2020; Lin et al. 2022; Müller et al. 2017; Müller et al. 2019; Xu
et al. 2024] have led to further improvements on challenging scenes.

Control variates is another popular technique [Crespo et al. 2021;
Fan et al. 2006; Hua et al. 2023; Lafortune and Willems 1995; Müller
et al. 2020; Salaün et al. 2022; Szirmay-Kalos et al. 2001; Szécsi
et al. 2004]. Prior work in rendering focuses on difference control
variates, which estimate the difference between the integrand and
an auxiliary function. We instead investigate the use of ratio control
variates. There are many other variance reduction techniques in
rendering [Doignies et al. 2024; Yan et al. 2024] that are orthogonal
to our method.

Path tracing is inherently vector-valued, as it estimates the radi-
ance for different color channels or wavelengths. Similarly, differen-
tiable rendering computes a vector of parameter derivatives. While
some previous works have used per-channel control variates [Hua
et al. 2023; Müller et al. 2020], importance sampling methods either
sample proportional to luminance or use a random mixture across
wavelengths [Wilkie et al. 2014]. In general, both difference con-
trol variates and importance sampling struggle with vector-valued
problems, as we will discuss further in Section 3.

Variance reduction in stochastic gradient descent. Stochastic gra-
dient descent approximates parameter gradients using a vector-
valued Monte Carlo sum estimator. Common variance reduction
techniques such as importance sampling [Johnson and Guestrin
2018; Katharopoulos and Fleuret 2019; Salaün et al. 2023, 2024; Zhao
and Zhang 2015] and control variates [Defazio et al. 2014; Johnson

Table 1. Summary of notations used throughout the paper.

𝑓 A scalar-valued function.
f A vector-valued function, where f (𝑥) = [𝑓1 (𝑥), · · · , 𝑓𝑀 (𝑥)].
𝐹 The integral of scalar-valued function 𝑓 , i.e. 𝐹 =

∫
𝑓 (𝑥)d𝑥 .

F The integral of vector-valued function f , i.e. F =
∫

f (𝑥)d𝑥 .
𝑔 A probability density function for importance sampling.
ℎ An auxiliary function for various control variates.
𝐻 The integral of ℎ, i.e. 𝐻 =

∫
ℎ(𝑥)d𝑥 .

𝐹, F̂ A Monte Carlo estimator of values 𝐹 or F.
𝑓 , ℎ̄ The average of samples, e.g. 𝑓 = 1

𝑁

∑𝑁
𝑖=1 𝑓 (𝑋𝑖 ).

𝑁 Random sample count.
𝑀 Number of entries in a vector-valued function f .
𝐾 Number of auxiliary functions used for control variates.

and Zhang 2013; Schmidt et al. 2017] have also been used. Most of
these techniques can only leverage limited prior information. In
contrast, our work exploits rendering-specific prior knowledge such
as BSDF sampling distributions.

Variance reduction in differentiable rendering. Physically-based
differentiable rendering [Azinović et al. 2019; Gkioulekas et al. 2013;
Li et al. 2018; Nimier-David et al. 2020; Vicini et al. 2021; Zhang
et al. 2020] enables solving inverse light transport problems using
gradient descent, and is inherently vector-valued as it estimates the
gradient. Variance reduction techniques are used to reduce gradient
variance [Belhe et al. 2024; Chang et al. 2023, 2024; Nicolet et al.
2021, 2023; Su and Gkioulekas 2024; Zeltner et al. 2021; Zhang et al.
2021a, 2020, 2021b]. While importance sampling [Belhe et al. 2024]
can selectively reduce variance of individual partial derivatives, it
is unable to simultaneously address all components of the gradient
vector. We show that ratio control variates can achieve substantial
variance reduction for the entire gradient vector.

Ratio estimator. Ratio estimators [Cochran 1977, Chapter 6] are a
statistical tool for estimating the ratio of the means of two random
variables, often in the context of finite populations. A well-known
example is weighted importance sampling [Powell and Swann 1966;
Spanier 1979; Spanier and Maize 1994], which is a biased variance-
reduction technique for Monte Carlo integration. This estimator
can be interpreted as a ratio control variate, which enables us to
derive debiased versions, multi-auxiliary variants, and combinations
with MIS techniques. Owen [2013, Chapter 8] briefly mentions ratio
control variates, but without in-depth discussion or establishing the
connection to weighted importance sampling.
In rendering, ratio estimators have been used for various pur-

poses [Balázs et al. 2003; Bekaert et al. 2000; Fraboni et al. 2022;
Stachowiak and Uludag 2015], e.g., to reduce variance of pixel filter
evaluation [Pharr et al. 2023, Section 5.4.3] or direct illumination
rendering [Heitz et al. 2018]. We advance both theory and applica-
tions of ratio estimators, including weighted importance sampling,
in rendering and inverse rendering, particularly in the context of
vector-valued integration. While Misso et al. [2022] discussed gen-
eral debiasing strategies for biased rendering algorithms, we debias
our ratio control variates using the Hartley-Ross estimator [1954],
a specialized technique for ratio estimators that has not previously
been used for rendering.

https://github.com/suikasibyl/vvmc
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Fig. 3. Limitations of using a shared sampling distribution. (a) For integrands
[ 𝑓1, 𝑓2 ], we show three choices of 𝑔 and their corresponding sample contribu-
tions 𝑓𝑗 /𝑔, where amore uniform 𝑓𝑗 /𝑔 indicates lower variance. (b)Choosing
𝑔 close to 𝑓1 makes 𝑓1/𝑔 uniform but not 𝑓2/𝑔. (c) The opposite happens
if 𝑔 is closer to 𝑓2. (d) Choosing 𝑔 ≈ 𝑓𝑎𝑣𝑔 = 1

2 (𝑓1 + 𝑓2 ) keeps both 𝑓1/𝑔
and 𝑓2/𝑔 moderately uniform, but less so than using their respective better
distributions in (b) and (c).

3 VECTOR-VALUED MONTE CARLO INTEGRATION

3.1 Problem formulation
The aforementioned applications motivate us to formulate a vector-
valued Monte Carlo integration framework. We summarize the
notation used throughout our derivations in Table 1.
Computing a vector-valued integral is equivalent to integrating

M functions, 𝑓𝑗 : Ω → R, separately:

𝐹 𝑗 =

∫
Ω
𝑓𝑗 (𝑥) d𝑥, where 𝑗 = 1, ..., 𝑀.

While it is possible to solve such a vector-valued problem using𝑀
separate, scalar-valued Monte Carlo estimators, the vector-valued
formulation is meaningful if one of the following assumptions holds:

(1) Given a sample 𝑋𝑖 , evaluating one integrand function value
𝑓𝑗 (𝑋𝑖 ) is nearly as costly as evaluating all𝑀 integrands.

(2) Generating a sample 𝑋𝑖 is significantly more expensive than
evaluating the integrand functions 𝑓𝑗 (𝑋𝑖 ).

If at least one of these assumptions holds, we would like to use each
sample 𝑋𝑖 for multiple integrals. As a result, the sampling distribu-
tion no longer necessarily corresponds to one specific integrand.

The applications that motivate our discussion all follow these as-
sumptions: 1) In physically-based rendering, sampling a light path is
costly and it is therefore advantageous to have each path contribute
to all color channels. 2) In differentiable rendering, reverse-mode au-
tomatic differentiation [Griewank andWalther 2008] reuses interme-
diate computations, making gradient computation only marginally
more expensive than evaluating a single partial derivative. There-
fore, the following derivations assume a negligible cost of evaluating
individual integrand functions and only reason about the total sam-
ple count 𝑁 . We will keep using Fig. 2 as a motivating example to
drive our discussion.

3.2 Importance sampling
Vector-valued importance sampling. We begin by analyzing the

use of importance sampling for vector-valued integration problems.
A straightforward solution is to draw all samples from a single
importance sampling distribution 𝑔(𝑥), and use each sample 𝑋𝑖 to
evaluate all integrands 𝑓𝑗 , as shown in Fig. 2(d):

𝑓1
𝑓2
𝑓3
𝑓4
𝑓5

𝑔1
𝑔2
𝑔3
𝑔4
𝑔5
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integrands
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approximation

(d) Many
integrands

D
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ut
io
n
g
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te
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ds

f

Fig. 4. Limitations of entry-wise stratification. Entry-wise stratification works
well when (a) different integrands are well-separated. However, it becomes
suboptimal if (b) the integrands are very similar, (c) the distributions poorly
approximate the integrands, or (d) the integrand vector has too many
entries, drastically decreasing the sample count 𝑁 𝑗 per estimator.

F̂𝐼𝑆 =

{
𝑓𝑗

𝐼𝑆
=

1
𝑁

𝑁∑︁
𝑖=1

𝑓𝑗 (𝑋𝑖 )
𝑔 (𝑋𝑖 )

, with 𝑗 = 1, . . . , 𝑀. (1)

The issue with this estimator is that 𝑔(𝑥) has to be suitable for
all integrands 𝑓𝑗 simultaneously. If the integrands have different
shapes, no single 𝑔 can be proportional to all of them, prohibiting
zero variance estimation. Fig. 3 illustrates this limitation on an
example problem. We derive the theoretically optimal sampling
distribution and analyze its variance in the supplemental material.

Entry-wise stratification. Alternatively, for each integrand 𝑓𝑗 , we
can draw 𝑁 𝑗 samples from a specific distribution 𝑔 𝑗 and use these
samples exclusively to evaluate 𝑓𝑗 , as shown in Fig. 2 (e):

F̂𝐸𝑊𝑆 =

 𝑓𝑗 𝐸𝑊𝑆
=

1
𝑁 𝑗

𝑁 𝑗∑︁
𝑖=1

𝑓𝑗 (𝑋𝑖,𝑗 )
𝑔𝑗 (𝑋𝑖,𝑗 )

, with 𝑗 = 1, . . . , 𝑀, (2)

where 𝑁1 + · · ·𝑁𝑀 = 𝑁 to maintain an equal-cost comparison. We
assume that all sampling techniques are of similar computational
complexity.
Using a dedicated sampling distribution for each integrand can

significantly reduce variance, but at the cost of a lower sample count
per integrand. Each sample now contributes only to its correspond-
ing integrand. Fig. 4 illustrates the limitations of this approach.

A dilemma of importance sampling. Using a single distribution
allows sample reuse across all integrands, but 𝑔 cannot precisely
match all 𝑓 . Entry-wise stratification circumvents this issue at the
cost of a decreased sample count per integrand. We show in the sup-
plementary material that neither strategy consistently outperforms
the other, and both are often suboptimal.

3.3 Difference control variates
Scalar-valued difference control variates. Wenow turn to discussing

standard control variates, which we will in the following refer to
as difference control variates (DCV). The scalar-valued difference
control variates estimator is typically formulated as:

𝑓 𝐷𝐶𝑉 =
1
𝑁

𝑁∑︁
𝑖=1

𝑓 (𝑋𝑖 ) − 𝑐 · (ℎ (𝑋𝑖 ) − 𝐻 ), (3)
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(a) auxiliaries
ℎ1 (𝑥 )
ℎ2 (𝑥 )

integrands
𝑓1 (𝑥 )
𝑓2 (𝑥 )

difference
𝑓1 − ℎ1
𝑓2 − ℎ2
ratio
𝑓1 /ℎ1
𝑓2 /ℎ2

(b) 𝑓 ≈ ℎ (c) 𝑓 ≈ 0.5ℎ (d) 𝑓 ≈ 2ℎ

Fig. 5. Impact of scaling factor on difference and ratio. (a)We assume a set
of fixed and normalized auxiliaries ℎ1 and ℎ2. (b)When 𝑓 ≈ ℎ, difference
control variates has a uniform sample contribution, 𝑓 − ℎ, where more
uniform is better. However, with a scaling factor, like (c) 𝑓 ≈ 0.5ℎ or (d)
𝑓 ≈ 2ℎ, the difference becomes non-uniform (2nd row). In contrast, the
sample contribution of importance sampling, i.e. the ratio 𝑓 /ℎ (3rd row),
always remains uniform.

where ℎ is an auxiliary function with a known integral 𝐻 , and 𝑐 is a
constant to be carefully chosen. Analytical BRDF and light sampling
distributions are often used as ℎ, since they are normalized and thus
𝐻 = 1, and 𝑐 is regressed in a data-driven manner [Fan et al. 2006].
Data-driven methods may also leverage additional samples and data
structures to adapt auxiliary functions to a specific scene, similar to
path guiding. In this paper, we do not consider such methods and
always set 𝑐 = 1, similar to prior work [Heitz et al. 2018].

Unlike importance sampling, control variates naturally decouple
sample reuse and auxiliary specialization. The corresponding vector-
valued formulation is straightforward:

F̂𝐷𝐶𝑉 =

{
𝑓𝑗

𝐷𝐶𝑉
=

1
𝑁

𝑁∑︁
𝑖=1

𝑓𝑗 (𝑋𝑖 ) − ℎ 𝑗 (𝑋𝑖 ) +𝐻 𝑗 . (4)

Shift and scale invariance. The mean square error (MSE) of a
scalar-valued difference control variates with 𝑐 = 1 is:

𝑀𝑆𝐸
[
𝐹𝐷𝐶𝑉

]
=

1
𝑁

∫
(𝑓 (𝑥 ) − ℎ (𝑥 ) − (𝐹 − 𝐻 ) )2 d𝑥, (5)

where for notational simplicity, and without loss of generality, we
assume that the integration domain is the [0, 1] interval. For a fixedℎ,
the estimator maintains zero variance for any 𝑓 (𝑥) = ℎ(𝑥)+𝑎, where
𝑎 is an arbitrary constant. We call this property shift invariance. In
contrast, for importance sampling:

𝑀𝑆𝐸
[
𝐹 𝐼𝑆

]
=

1
𝑁

∫ (𝑓 (𝑥 ) − 𝐹 · 𝑔 (𝑥 ) )2

𝑔 (𝑥 ) d𝑥. (6)

The estimator maintains zero variance for any 𝑓 (𝑥) = 𝑎 ·𝑔(𝑥), since
𝑔 is a normalized probability density and thus 𝐹 =

∫
𝑎 · 𝑔(𝑥) d𝑥 = 𝑎.

We call this property of importance sampling scale invariance.
Empirical evidence shows that scale invariance is much more

important than shift invariance in forward and inverse rendering
applications, since terms the contribution of a given light path is
a product. Unfortunately, difference control variates are sensitive
to scaling, as illustrated in Fig. 5. As a result, directly applying
difference control variates with 𝑐 = 1 may be suboptimal [Heitz
et al. 2018], and often performs worse than the baseline (e.g., Fig. 10).

4 RATIO CONTROL VARIATES
We now introduce ratio control variates (RCV), which can signifi-
cantly reduce variance for vector-valued integration problems. We
first introduce a biased RCV estimator (Section 4.1) and later analyze
its bias and introduce an unbiased version (Section 4.2).

4.1 Basic estimator
Ratio control variates approximate the integral 𝐹 as 𝐹/𝐻 ·𝐻 , where
𝐹/𝐻 is an estimator of the ratio 𝐹/𝐻 and 𝐻 is the known integral
of an auxiliary function ℎ. In contrast, the previously discussed
difference control variates estimate 𝐹 as 𝐹 ≈ �𝐹 − 𝐻 + 𝐻 .
A straightforward ratio control variate estimator uses the ratio

of means 𝑓 /ℎ̄ to estimate 𝐹/𝐻 . Combining this with importance
sampling, we get:

𝐹𝑅𝐶𝑉 = 𝐻 ·
∑𝑁

𝑖=1 𝑓 (𝑋𝑖 )/𝑔 (𝑋𝑖 )∑𝑁
𝑖=1 ℎ (𝑋𝑖 )/𝑔 (𝑋𝑖 )

. (7)

The MSE of this estimator can be approximated as:

𝑀𝑆𝐸
[
𝐹𝑅𝐶𝑉

]
≈ 1
𝑁

∫ (𝑓 (𝑥 ) − (𝐹/𝐻 ) · ℎ (𝑥 ) )2

𝑔 (𝑥 ) d𝑥 +𝑂
(

1
𝑁 2

)
. (8)

For any 𝑎, if 𝑓 (𝑥) = 𝑎 · ℎ(𝑥), then 𝐹 = 𝑎 · 𝐻 and the numerator
becomes zero. Therefore, ratio control variates satisfy the same
scale invariance as importance sampling. We provide a full proof of
Eq. (8) in the supplementary material.
Similar to difference control variates, specialized auxiliaries ℎ 𝑗

can easily be applied to each integrand 𝑓𝑗 for vector-valued integrals:

F̂𝑅𝐶𝑉 =

{
𝐹 𝑗

𝑅𝐶𝑉 = 𝐻 𝑗 ·
∑𝑁

𝑖=1 𝑓𝑗 (𝑋𝑖 )/𝑔 (𝑋𝑖 )∑𝑁
𝑖=1 ℎ 𝑗 (𝑋𝑖 )/𝑔 (𝑋𝑖 )

. (9)

Eq. (8) suggests that the ideal ℎ 𝑗 for efficient ratio control variates
should be proportional to the integrand 𝑓𝑗 and have a known integral
𝐻 𝑗 . PDFs of importance sampling distributions meet these criteria
well, as they are crafted to be proportional to the integrand and
always integrate to 1. Therefore, our approach can easily incorporate
the lessons learned from importance sampling:
(1) We can directly use the PDFs of importance sampling distribu-

tions, such as BSDF sampling, as auxiliaries. This allows our
RCV to be widely applied, with minimal modification to the
renderer.

(2) We can leverage techniques that improve importance sampling
efficiency, such as multiple importance sampling and positiviza-
tion, to make RCV more efficient as well.

More detailed discussions are provided in Section 5, where we intro-
duce our extensions of RCV estimators to integrate them in forward
and inverse renderers.

Relation to weighted importance sampling. Ifℎ is a normalized PDF,
the ratio-of-means formulation in Eq. (7) is identical to weighted
importance sampling. However, our RCV formulation has several
advantages: it enables debiasing and using auxiliary functions that
are not PDFs, or which require estimating 𝐻 . Moreover, we believe
that the general application to vector-valued integration problems
is novel and not explicitly discussed in prior work on weighted
importance sampling.
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ω₀

x₀Path vertices
Light sampling
BSDF sampling

(a) BSDF sampling (b) Light sampling

Fig. 6. Vector-valued integrands in surface light transport. (a) The BSDF
may exhibit different responses across color channels. (b)Multiple lights
are likely to have varying colors. Conventional luminance-based sampling
methods cannot leverage chromatic information.

4.2 Bias analysis and debiasing
Bias analysis. The basic ratio control variates estimator is biased,

but the bias decreases in 𝑂 (𝑁 −1) [Cochran 1977]:

𝐵𝑖𝑎𝑠
[
𝐹𝑅𝐶𝑉

]
≈ 𝐹

𝐻

[
Var

[
�̂�
]

𝐻
−

Cov
[
�̂�, 𝐹

]
𝐹

]
+𝑂

(
1
𝑁 2

)
. (10)

Moreover, Hartley and Ross [1954] proved that the absolute bias
ratio (ABR) is bounded by the coefficient of variation of ℎ(𝑥):

𝐴𝐵𝑅 [𝐹𝑅𝐶𝑉 ] = |Bias[𝐹𝑅𝐶𝑉 ] |
𝜎 [𝐹𝑅𝐶𝑉 ]

≤ 𝜎 [�̂� ]
𝐻

, (11)

where 𝜎 [𝑋 ] is the standard deviation of a random variable 𝑋 . This
implies that the bias depends on howwell-suited the sampling distri-
bution 𝑔 is to integrate ℎ. The closer 𝑔 is to being proportional to ℎ,
the smaller the bias. Hence, we in practice need a “safe“ sampling
distribution 𝑔 to avoid extreme bias, e.g., a mixture of all ℎ 𝑗 (𝑥).

Unbiased ratio estimator. The expectation of the ratio of means
estimator 𝑓 /ℎ̄ is intractable. Therefore, its bias can only be reduced,
but not completely eliminated [Beale 1956; Quenouille 1956; Tin
1965]. As an alternative, Hartley and Ross [1954] proposed the
mean of ratios estimator

∑ 𝑓 (𝑥𝑖 )
ℎ (𝑥𝑖 ) , which has a tractable expectation.

Debiasing this estimator results in the following unbiased ratio
control variates estimator:

F̂𝐻𝑅 =


𝐻𝑗

𝑁

𝑁∑︁
𝑖=1

𝑓𝑗 (𝑋𝑖 )
ℎ𝑗 (𝑋𝑖 )

+ 𝑁

𝑁 − 1


1
𝑁

𝑁∑︁
𝑖=1

𝑓𝑗 (𝑋𝑖 )
𝑔 (𝑋𝑖 )

− 1
𝑁 2

𝑁∑︁
𝑖=1

𝑓𝑗 (𝑋𝑖 )
ℎ𝑗 (𝑋𝑖 )

𝑁∑︁
𝑖=1

ℎ𝑗 (𝑋𝑖 )
𝑔 (𝑋𝑖 )

 . (12)

It has the same approximate MSE as the biased ratio estimator in
Eq. (8) and can be used as a drop-in replacement. A minor limitation
is that the sample count𝑁 must be greater than one to avoid division
by zero. In Appendix A, we further discuss how to avoid numerical
instabilities. In the supplementary material, we provide expanded
discussions on vector-valued integration and additional variants of
the RCV estimator.

5 APPLICATIONS
In practice, all known importance sampling distributions, including
those for BSDFs, light sources, media, derivatives, and others, can be
used as auxiliary functions for our ratio control variates, since their
PDFs have a known integral of 1. This allows us to build on previous
importance sampling research, improving vector-valued integral
problems in surface light transport (Section 5.1), volumetric light
transport (Section 5.2), and differentiable rendering (Section 5.3).
In their respective subsections, we discuss our extensions of ratio
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MSE: 0.0091

MSE: 0.0067

0.0102

0.0088

0.0057

0.0056

0.0115

0.0058

(a) (b)
Fig. 7. Wavelength-dependent BRDF. (a) The Ibiza Sunset material [Dupuy
and Jakob 2018] has a wavelength-dependent BRDF. We render the material
under direct illumination from a constant environment map, using only
BRDF importance sampling and 1 sample per pixel (SPP). (b)We separately
visualize each color channel both without (top row) and with our ratio
control variates (bottom row).

control variates to address challenges when applying to multiple
importance sampling, global illumination, and differentiable path
tracing.

Implementation. All methods are implemented in a custom ren-
derer using the Vulkan API with hardware-accelerated ray tracing.
The results were rendered on a laptop with an NVIDIA GeForce
RTX 3070 GPU.

5.1 Surface light transport
We apply our method to reduce variance on scenes that feature
chromatic BSDFs and light sources. For this, we leverage existing
BSDF and light sampling techniques as ratio control variates (Fig. 6).

Chromatic BSDF sampling. Simple analytical BSDFmodels usually
have the same shape across color channels, as chromatic diversity
is only introduced through a multiplicative constant (reflectance or
albedo). However, some models like goniochromatic BSDFs [Bel-
cour and Barla 2017] and measured BRDFs [Dupuy and Jakob 2018;
Matusik et al. 2003] exhibit wavelength-dependent reflectance, thus
the shape of each color channel may vary significantly.

As shown in Fig. 7, luminance-based importance sampling dispro-
portionately focuses on the green channel2, which leads to signifi-
cant noise in the red and blue channels, even under constant lighting.
Our RCV effectively reduce this noise, and requires only 0.03% more
storage3 for RGL dataset and negligible runtime overhead.

Chromatic many-light sampling. Different lights in a scene often
have different colors, yet the standard many-light sampling method
typically also considers only luminance. We extend the light BVH
sampling method [Conty Estevez and Kulla 2018] to support ratio
control variates. It increases per-node storage from 28 bytes [Pharr
et al. 2023] to 32 bytes4, enabling the computation of the PDF for
each color channel.
As shown in Fig. 9, luminance-based sampling can cause severe

noise even in scenes with extremely simple BRDFs, visibility and

2Luminance-based importance sampling is the suggested solution for the RGL
dataset [Dupuy and Jakob 2018]; luminance = 0.2126 × 𝑅 + 0.7152 ×𝐺 + 0.0722 × 𝐵.
3Since we need to compute the PDF for each color channel, we must store the normal-
ization constants for each data slice.
4We use two float16 to store the power of the U and V channels alongside the luminance
(Y channel), so that we can compute PDF for each color channel.
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Fig. 8. Multiple Importance Sampling (MIS): Our estimators are compatible with MIS. We use nine chromatic sphere lights to illuminate the VeachMis
scene. We compare the visual differences (using FLIP) and relative Mean Squared Error (relMSE) of standard path tracing (PT), ratio control variates, and the
Hartley-Ross estimator applied to the entire integrands (RCV, HR), as well as methods applied only to the next event estimation sub-integrands (RCV-MIS,
HR-MIS). All methods were rendered with 3 SPP and direct illumination only. Correctly combining MIS with the ratio estimator significantly reduces the error.
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0.01510
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Fig. 9. Three lights. The Bedroom scene is directly illuminated by three
spherical area lights with RGB radiance values of [300, 4, 5], [4, 300, 5], and [4,
5, 300]. Our ratio control variates and Hartley-Ross estimators significantly
reduce the noise, under the equal-sample-and-time comparison (2 SPP).

MSE
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Reference Tracing
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Fig. 10. Many lights.We apply our technique in combination with a light
BVH to render the LivingRoom scene illuminated by over 100 chromatic
sphere lights. In an equal-sample-and-time comparison (3 SPP), our esti-
mators outperform the baseline and other variance reduction methods for
vector-valued integration, including element-wise stratification and differ-
ence control variates.

lighting. Our ratio control variates and Hartley-Ross estimators
significantly reduce the noise at negligible overhead.
In Fig. 10, we validate our approaches in a more challenging

scene with over 100 lights, and further compare our methods with
other vector-valued variance reduction techniques. Element-wise
stratification has only 1/3 of the samples per channel compared to
the other methods. This results in higher variance due to factors not
captured by the sampling distributions (e.g., visibility). Difference
control variates on the other hand suffer from significant noise due
to the lack of scale invariance. As a result, both methods perform
even worse than the baseline.
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Fig. 11. Combining MIS and RCV. In surface light transport, we often have
two sets of auxiliary functions, based on (e) BRDF and (f) NEE (next event
estimation) sampling distributions. However, neither can independently
match (a) the complete integrand accurately. (b)MIS decomposes the origi-
nal integrand into a sum of sub-integrands (c) and (d), by multiplying with
MIS weights. Each sub-integrand then aligns more closely with the corre-
sponding auxiliaries, and can be independently estimated using RCV. While
the example shows a single integrand, this approach extends seamlessly to
vector-valued problems by applying the decomposition per entry.
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Fig. 12. Full-bounce and per-bounce RCV. After constructing paths via it-
erative BSDF importance sampling, ratio control variates can be applied
either per-bounce or full-bounce. In full-bounce RCV, contributions from all
path lengths are considered together. In per-bounce RCV, the integrands are
decomposed into the sum of fixed-length path contributions, and RCV is
applied separately to each. At a path vertex 𝑥𝑖 , we denote BSDF throughput
as 𝜌𝑖 , the corresponding auxiliary function as ℎ𝑖 , and the emission as 𝑒𝑖 .

Multiple importance sampling. In practice, BSDF and light sam-
pling distributions each only partially describe the actual integrands.
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Fig. 13. Full-bounce versus per-bounce RCV. The CoffeeMaker scene is
rendered using GGX BRDFs with wavelength-dependent roughness and a
maximum path length of 5. The per-bounce RCV and HR estimators improve
over both path tracing and the full-bounce RCV.
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Fig. 14. Per-bounce RCV with NEE.Our per-bounce RCV can also be applied
to next event estimation. We separately show contributions of paths of
different lengths, demonstrating the benefits of our methods for multi-
bounce indirect lighting. We adjusted the exposure of the images for optimal
display.

Our estimators degrade if the used auxiliary function poorlymatches
the actual integrand. Fortunately, both ratio control variates and the
Hartley-Ross estimator can leverage multiple importance sampling
(MIS) [Veach 1998] to combine several auxiliaries. Fig. 11 illustrates
this on a 1D example.
Multi-sample MIS decomposes the integrand into two parts by

multiplying withMIS weights𝑤1 and𝑤2. Each part can be evaluated
using a corresponding auxiliary function that is more likely to match
the MIS-weighted integrand:

𝐹𝑅𝑎𝑡𝑖𝑜
𝑀𝐼𝑆

=

∑𝑁
𝑖=1 𝑤1 (𝑋𝑖 ) 𝑓 (𝑋𝑖 )𝐻1∑𝑁

𝑖=1 ℎ1 (𝑋𝑖 )
+
∑𝑁

𝑖=1 𝑤2 (𝑋𝑖 ) 𝑓 (𝑋𝑖 )𝐻2∑𝑁
𝑖=1 ℎ2 (𝑋𝑖 )

,

Fig. 8 shows the results of using our chromatic Light BVH with
and without MIS using balance heuristic weights. The specular
regions are dominated by the BRDF, which is not captured by the
next event estimation auxiliaries, resulting in high noise with our
methods. However, by applying MIS, these regions are assigned to
be handled by BRDF importance sampling, leading to significant
improvements.

Real scattering

Null sampling

Phase sampling
Distance sampling

(a) Homogeneous (b) Heterogeneous

Fig. 15. Vector-valued integrations in volumetric light transport. (a) A homo-
geneous medium with wavelength-dependent absorption and scattering
properties results in wavelength-dependent distance sampling, while the
phase function may also vary across color channels. (b) Rendering heteroge-
neous media using delta tracking additionally requires sampling, potentially
wavelength-dependent, discrete decisions at each path vertex.
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Fig. 16. Homogeneous volume rendering.Our approach can reduce the mean
squared error (MSE) of homogeneous media. Dragon uses a dielectric BSDF
to enclose a homogeneous but chromatic medium, with property values of
𝜎𝑎 = [0.05, 0.11, 0.74], 𝜎𝑠 = [0.064, 0.45, 1.23], and 𝑔 = [0.3, 0.0, −0.2].

Path-space ratio control variates. For multi-bounce path samples,
we can use the PDF of the entire path as the auxiliary. Since the
path PDF always integrates to 1, all analysis remain valid. On the
other hand, a naive recursive application of RCV would lead to an
inconsistent estimator, as discussed in the supplemental material.

Full-bounce and per-bounce ratio control variates. A straightfor-
wardway to handle global illuminationwith path-space ratio control
variates is to use the total radiance of the path as the integrand 𝑓 , and
the entire path PDF as the auxiliary ℎ, referred to as the full-bounce
RCV. However, as shown in Fig. 12, radiance can be contributed
by each vertex along the path, not just the last one. Contributions
from earlier vertices are independent of how subsequent vertices
are sampled. As a result, the total path PDF does not correlate well
with these terms and is thus not an effective auxiliary.

Alternatively, we can consider the sub-integral of contributions
from a specific path length, and use the corresponding prefix path
PDF as the auxiliary function for better correlation. This approach is
referred to as the per-bounce method. Fig. 13 shows how per-bounce
RCV and HR provide more reliable variance reduction compared to
full-bounce variants.

The per-bounce formulation can easily be extended to next event
estimation, as depicted by Fig. 14. It is also trivial to use MIS on
each bounce as discussed in Fig. 11. Therefore, our methods are fully
compatible with standard path construction techniques.

5.2 Volumetric light transport
Volumetric path tracing constructs light paths incrementally by
sampling both phase function and free-flight distance. Rendering
heterogeneous media using delta tracking [Miller et al. 2019; Wood-
cock et al. 1965] additionally requires discrete sampling of the type
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Fig. 17. Heterogeneous volume rendering. Our approaches can effectively
handle heterogeneous media with wavelength-dependent properties. RCV
and HR significantly reduce chromatic noise along the boundaries of het-
erogeneous media, even at low sample counts (8 SPP in the insets).

Table 2. Comparison of performance without and with our method

Scene SPP Baseline (ms) Ours (ms)

Ibiza Sunset (Fig. 7) 32 57.9 58.7
Living Room (Fig. 10) 32 97.4 97.6
Ground Explosion (Fig. 17) 4 221.1 221.2

of event at each interaction (i.e., absorption, scattering, or null scat-
tering). All these factors can be wavelength-dependent, as shown in
Fig. 15. The standard solution is hero-wavelength sampling [Wilkie
et al. 2014], which samples a random mixture across color channels.
Using path-space ratio control variates, applying ratio control

variates to volumetric light transport becomes straightforward. As
shown in Fig. 16, our RCV significantly reduces the mean square
error in homogeneous media without noticeable additional compu-
tational or memory costs.

Our methods also benefit heterogeneous media, as demonstrated
in Fig. 17. In this example, the simple RCV suffers from visible
bias at low sample counts. However, as shown in Fig. 18, this bias
rapidly diminishes within approximately 16 SPP, thanks to the 1/𝑁
convergence rate.

Runtime overhead. In forward rendering, the main overhead of
our method comes from evaluating ℎ𝑖 for each color channel. While
this cost is negligible for analytical distributions, even tree-based
methods like light BVH incur minimal overhead. This is because our
method does not require additional tree traversal — it only reads a
few more bytes at the leaf nodes. Quantitative results across test
scenes confirm this efficiency (Table 2).

Memory overhead. For analytical distributions, there is no mem-
ory overhead, as the PDF can be computed directly. For tree-based
distributions, the original data structures typically support evaluat-
ing the PDF only for luminance-based sampling, not for individual
color channels. As a result, we precompute normalization constants
for each channel, which introduces a small memory cost, as dis-
cussed in Section 5.1.

5.3 Differentiable rendering
We discuss two differentiable rendering applications in which ratio
control variates can reduce the variance. One for when we have
access to a differentiable path tracer (Section 5.3.1). One for when
we do not have access to a differentiable renderer and have to rely
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Fig. 18. Bias convergence. While the bias of RCV may be significant at very
low sample counts, it decreases rapidly thanks to the 1/𝑁 convergence rate.
We visualize the per-pixel squared bias, and provide its average value in the
inset text.

(a) Different parameter 𝑖 (b) Different vertex 𝑗

Path vertex
Diff. vertex (w.r.t. 𝜃1)
Diff. vertex (w.r.t. 𝜃2)
BRDF sampling (𝜃1)
Derivative sampling (𝜃1)
Derivative sampling (𝜃2)

Fig. 19. Vector-valued integration in differentiable path tracing. Differentiable
path tracing is a vector-valued problem due to gradient contributions of (a)
different parameters 𝜃𝑖 and (b) different path vertices along a path. Ideally,
different sampling distributions would be used for each integral.

on stochastic derivative-free optimization [Deliot et al. 2024; Fischer
and Ritschel 2023; Wang et al. 2024].

5.3.1 Optimization via differentiable path tracing. In this section,
we formulate gradient estimation in differentiable rendering as a
vector-valued integration in the path space, with the vector-valued
integrand having components both from different parameters and
from different path vertices (Fig. 19). Applying ratio control variates
to differentiable path tracing, however, is not trivial since the auxil-
iary functions we used are designed for the entire path space, and
not for a specific parameter. Below, we show how ourmarginal ratio
control variates can be used to extend importance sampling distri-
butions to a stochastic auxiliary function to significantly reduce the
variance. Finally, we discuss our positivized ratio estimator to handle
the case when the auxiliary integral 𝐻 is 0. We focus on the interior
term in this discussion [Zhao et al. 2020], and leave discontinuity
handling [Bangaru et al. 2020; Yan et al. 2022; Zhang et al. 2023] to
future work.

Path space integration for gradient. Our goal is to derive the vector-
valued integrand for which we can use our ratio control variates
to reduce the variance. In inverse rendering, the derivative of the
loss function L with respect to one specific parameter 𝜃𝑖 (where
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𝑖 = 1, ..., 𝑀) is:

𝜕𝜃𝑖L = 𝜕IL · 𝜕𝜃𝑖 I =
𝐾∑︁
𝑘=1

𝜕𝐼𝑘L · 𝜕𝜃𝑖 I𝑘 , (13)

where I is the rendered image, I𝑘 is one pixel of the image, and 𝐾 is
the number of pixels. The derivative 𝜕𝜃𝑖 I𝑘 can further be formulated
as a path space integration [Nimier-David et al. 2020]. We consider
the contributions from paths with different fixed path lengths 𝑁
separately, where 𝑁 = 2, ..., 𝑁max :

𝜕𝜃𝑖 I𝑘 =

𝑁
max∑︁

𝑁=2
𝜕𝜃𝑖 I𝑁

𝑘
=

all paths contributes to pixel I𝑘︷                                  ︸︸                                  ︷
𝑁

max∑︁
𝑁=2

∫
X𝑁
𝑘

𝜕𝜃𝑖

[
𝑁 −1∏
𝑗=0

𝑓𝑗 (x̄)
]

dx̄︸                          ︷︷                          ︸
paths with a fixed length N

, (14)

where X𝑁
𝑘

is the path space consisting of all paths x̄ contributing
to pixel I𝑘 and have fixed path length 𝑁 , and 𝑓𝑗 (x̄) represents the
forward radiance contribution from each path vertex x𝑖 :

𝑓𝑖 (x̄) =

𝑊𝑒 (x𝑜 , 𝜔x1,x0 )𝐺 (x0, x1), if 𝑖 = 0,
𝐺 (x𝑖 , x𝑖+1)𝜌𝑠 (x𝑖−1, x𝑖 , x𝑖+1), if 0 < 𝑖 < 𝑁,

𝐿𝑒 (x𝑁 , 𝜔x𝑁 ,x𝑁 −1 ), if 𝑖 = 𝑁,
(15)

where𝑊𝑒 is the sensor importance, 𝐺 is the geometry term, 𝜌𝑠 is
the BSDF, and 𝐿𝑒 is the light emission. To further simplify notation,
we introduce 𝑓 ★

𝜃𝑖
(x̄, 𝑗) to be the derivative contribution from path

vertex x𝑗 to parameter 𝜃𝑖 ,

𝑓 ★
𝜃𝑖
(x̄, 𝑗) = 𝑓0 (x̄) 𝑓1 (x̄) · · · 𝑓𝑁 (x̄) · 𝜕𝜃𝑖 𝑓𝑗 (x̄)/𝑓𝑗 (x̄). (16)

Therefore, we can further decompose the contribution from paths of
fixed length 𝑁 into contributions from each vertex along the path:

𝜕𝜃𝑖 I𝑁
𝑘

=

∫
X

[
(𝜕𝜃𝑖 𝑓0 ) 𝑓1 · · · 𝑓𝑁

]︸                  ︷︷                  ︸
𝑓 ★
𝜃𝑖

(x̄,0)

+ · · · +
[
𝑓0 · · · 𝑓𝑁 −1 (𝜕𝜃𝑖 𝑓𝑁 )

]︸                       ︷︷                       ︸
𝑓 ★
𝜃𝑖

(x̄,𝑁 )

dx̄ (17)

=

∫
X

[
𝑓 ★
𝜃𝑖
(x̄, 0) + 𝑓 ★

𝜃𝑖
(x̄, 1) + · · · + 𝑓 ★

𝜃𝑖
(x̄, 𝑁 )

]
dx̄. (18)

The derivative can then be computed as a sum over pixels, path
lengths, and vertex indices:

𝜕𝜃𝑖L =

𝐾∑︁
𝑘=1

𝑁
max∑︁
𝑁=2

𝑁−1∑︁
𝑗=0

∫
X𝑁
𝑘

[
𝜕I𝑘L · 𝑓 ★

𝜃𝑖
(x̄, 𝑗)

]
dx̄ (19)

The integral above is vector-valued. The integrands 𝜕I𝑘L · 𝑓 ★
𝜃𝑖
(x̄, 𝑗)

vary for different pixel 𝑘 , parameter 𝜃𝑖 , path vertex 𝑗 , and path
length 𝑁 . In practice, however, storing a vector with 𝐾 pixels, 𝑀
parameters, and for a total of 𝑁max different path lengths each
having 𝑁 different vertices, is impractical. We therefore marginalize
over all pixels and only store a vector for each parameter 𝜃𝑖 , each
path vertex 𝑗 , and each path length 𝑁 [Chang et al. 2023]:

𝜕
𝑁,𝑗

𝜃𝑖
L =

𝐾∑︁
𝑘=1

∫
X𝑁
𝑘

[
𝜕I𝑘L · 𝑓 ★

𝜃𝑖
(x̄, 𝑗)

]
dx̄. (20)

x

(a) DI (𝑗 = 1) (b) GI (𝑗 = 2) (c) 1D example

f(x)
h’(x)

Fig. 20. Inefficiency of naïve auxiliary function. Only a subset of sampled
light paths will hit a specific texel and contribute to its derivative. (a) For
direct illumination, paths from most pixels can never contribute to a given
target texel and (b) a similar scenario arises for global illumination. (c) We
illustrate the intuition in 1D: while the auxiliary function aligns well with
the integrand where it is non-zero, the integrand’s domain is much narrower,
as most samples fail to touch the target texel being optimized. This makes
ℎ′ a bad auxiliary function.

Marginal ratio control variates. We now want to design an aux-
iliary function ℎ for the vector-valued integrand in Eq. (20). For
BSDF derivatives, when pixel 𝑘 , parameter 𝑖 , path length 𝑁 , and
differential vertex index 𝑗 are all fixed, importance sampling of
the integrands 𝑓 ★

𝜃𝑖
(x̄, 𝑗) is known: by using BSDF derivative sam-

pling [Belhe et al. 2024] at x𝑗 and using BSDF sampling for other
vertices. We denote the PDF of such incremental path construction
schema as:

ℎ′(𝜃𝑖 , 𝑗 ) (x̄) = 𝑝 (𝜃𝑖 , 𝑗 ) (x0) · 𝑝 (𝜃𝑖 , 𝑗 ) (x1) · · · 𝑝 (𝜃𝑖 , 𝑗 ) (x𝑁 ), (21)

where the local probability density 𝑝 (𝜃𝑖 , 𝑗 ) (x0) at each path vertex
x𝑗 is:

𝑝 (𝜃𝑖 ,𝑗 ) (x𝑚 )∝



𝑊𝑒 (x𝑜 , 𝜔x1,x0 )𝐺 (x0, x1 ), if𝑚 = 0,
𝐺 (x𝑚, x𝑚+1 )𝜌𝑠 (x𝑚−1, x𝑚, x𝑚+1 ), if 0 <𝑚 < 𝑁,𝑚 ≠ 𝑗

𝐺 (x𝑖 , x𝑚+1 )𝜕𝜃𝑖 𝜌𝑠 (x𝑚−1, x𝑚, x𝑚+1 ), if 0 <𝑚 < 𝑁,𝑚 = 𝑗

1, if𝑚 = 𝑁,

which accounts for every term except the emission in Eq. (16).
However, directly usingℎ′ (Eq. (21)) as auxiliary is very inefficient.

Fig. 20 reveals the reason for that: not all path generated by ℎ′
will contribute to the integrand 𝑓 ★

𝜃𝑖
(x̄, 𝑗). For example, in texture

optimization, a path that does not hit the target texel at x𝑗 will never
contribute to its derivative. Such paths can frequently be generated
using incremental construction with BSDF and BSDF derivative
sampling. This fact makes ℎ′ (𝑥) a very poor auxiliary function to
describe actual integrand 𝑓 ★

𝜃𝑖
(x̄, 𝑗).

To alleviate this, we aim to construct a more accurate auxiliary:

ℎ𝜃𝑖 , 𝑗 (x̄) = 𝑝 (x0) · 𝑝 (x1) · · · 𝑝 (x𝑁 ) · I(x𝑗 , 𝜃𝑖 ), (22)

where I(x̄, 𝜃𝑖 ) is an indicator function that returns 1 if vertex x𝑗
actually touches 𝜃𝑖 , and 0 otherwise. ℎ (𝜃𝑖 , 𝑗 ) is far more precise than
ℎ′(𝜃𝑖 , 𝑗 ) , but we do not know its integral 𝐻 (𝜃𝑖 , 𝑗 ) .

To use ratio control variates, we need to estimate𝐻 using another
estimator 𝐻 , making the new estimator to be 𝐻 · 𝑓 /ℎ̄. Specifically,
if we use the sample average ℎ̄ to estimate 𝐻 , it cancels out the
denominator, leaving only 𝑓 . To make it meaningful, we need an
estimator 𝐻 more accurate than ℎ̄.

As illustrated in Fig. 21, our key idea to estimate the integration
𝐻 is to numerically integrate on the prefix of the path before vertex
x𝑗 , and analytically marginalize the suffix after the vertex. The
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Σ  (x₁,θi)×dh₁×h₂ /N
× Σ  (x₁,θi) N

F: Estimator of F

Hcₒrr: Estimator of H
that better correlates F

Hmarginal: Estimator of H
that is less noisy than Hcₒrr

x₀x₀

(x₁,θi)

ρ₂
e₃

Marginal
RCV: I

I

I

ρ₁
I

(a) All potential paths (b) Path contribution 𝑓 (c) Suffix marginalization

Fig. 21. Marginal ratio control variates. (a) We optimize the parameter 𝜃𝑖
for a single texel, focusing on paths of length 𝑁 = 3 with contributions
solely from the path vertex 𝑥1. Only paths that hit the texel at 𝑥1 contribute
non-zero values to the gradient. (b) The path contribution consists of the
BRDF derivative d𝜌1, the indicator I(x1, 𝜃𝑖 ) , the BRDF 𝜌2, and the emission
𝑒3. There are corresponding auxiliaries dℎ1 for derivative d𝜌1 and ℎ2 for
BRDF 𝜌2, and the path-space auxiliary dℎ1 · I(x1, 𝜃𝑖 ) ·ℎ2 correlates the path
contribution 𝑓 well. (c) By partitioning the path at vertex 𝑥 𝑗 , we observe
the auxiliary function of suffix path has no indicator function and thus
always integrates to 1 since we use PDFs as auxiliaries. For estimating 𝐻 ,
the suffix only introduces more noise, so we analytically marginalize the
suffix and numerically integrate only the prefix path. This approach yields
a less noisy estimator for 𝐻 . Dividing the better-correlated estimator of 𝐻
and multiplying the marginalized estimator of 𝐻 forms our marginal RCV.

marginalization can be written as:

𝐻 (𝜃𝑖 , 𝑗 ) =
∫
𝑝 (x0 ) · 𝑝 (x1 ) · · · 𝑝 (x𝑁 ) · I(x𝑗 , 𝜃𝑖 )dx̄ (23)

=

prefix path PDF with indicator function I︷                                                      ︸︸                                                      ︷∫
𝑝 (𝑥0 ) · · · 𝑝 (𝑥 𝑗−1 ) · I(x𝑗 , 𝜃𝑖 )dx0 · · · xj−1 (24)

·

suffix path PDF, known to integrate to 1︷                                   ︸︸                                   ︷∫
𝑝 (𝑥 𝑗 ) · · · 𝑝 (𝑋𝑁 )dxj · · · xN (25)

=

∫
𝑝 (𝑥0 ) · 𝑝 (𝑥1 ) · · · 𝑝 (𝑥 𝑗−1 ) · I(x𝑗 , 𝜃𝑖 )dx̄. (26)

For a path x̄, whether its 𝑗-th vertex x𝑗 touches 𝜃𝑖 is only relevant
to the prefix path x0x1 · · · xj−1xj and irrelevant to the suffix path
xj · · · xN. Therefore, we can extract the integration of the suffix path
out, as in Eq. (25), whose integral is known to be 1.
The remaining prefix integral Eq. (26) is a better estimator of 𝐻

than ℎ̄ (Eq. (23)). This variance reduction method by marginalizing
suffix is known as conditioning [Owen 2013] or Rao-Blackwellization
[Blackwell 1947]. Therefore, we use a Monte Carlo estimator of
Eq. (26) as 𝐻 and still leave Eq. (23) in denominator as it correlated
the numerator better.

Positivized ratio estimator. For ratio control variates, 𝑓 /ℎ̄ · 𝐻 , if
the auxiliary integral 𝐻 is 0, applying ratio control variates results
in a division by zero. For example, Belhe et al. [2024] showed that
the derivatives of all microfacet normal distribution functions (NDF)
integrate to zero, so we cannot directly use the NDF derivative as a
valid auxiliary. As shown in Fig. 22, to address this, we decompose

= =
+R

C
V

R
C

V

fi⁺

fi⁻

fi⁺

hi⁺

fi⁻

hi⁻hi

fi
(a) (b) (c) (d)

(e) (f) (g)
𝑓𝑖 ℎ𝑖

𝑓 +𝑖 ℎ+𝑖

𝑓 −𝑖 ℎ−𝑖

Fig. 22. Positivized RCV. In cases where (e) the auxiliary function ℎ has
a known integral 𝐻 = 0, RCV becomes meaningless. To address this, we
can decompose ℎ into (f) positive and (g) negative components, so that
each part has a non-zero integral. We then apply the same decomposition
to (a) integrands as well and apply our RCV separately. While the example
shows a single integrand, this approach extends seamlessly to vector-valued
problems by applying the decomposition per entry.

the integrands into positive and negative parts [Owen and Zhou
2000], 𝑓 + and 𝑓 − , and estimate each part seperately with ratio
control variates, using positivized sampling distributions, ℎ+ and
ℎ− , as auxiliaries:

𝐹𝑅𝑎𝑡𝑖𝑜
𝑃𝑜𝑠

=

∑𝑁
𝑖=1 𝑓

+ (𝑋𝑖 )∑𝑁
𝑖=1 ℎ

+ (𝑋𝑖 )
· 𝐻+ +

∑𝑁
𝑖=1 𝑓

− (𝑋𝑖 )∑𝑁
𝑖=1 ℎ

− (𝑋𝑖 )
· 𝐻 −

Despite 𝐻+ +𝐻− = 0, since 𝐻+ ≠ 0 and 𝐻− ≠ 0, the ratio control
variates will work as usual for each term. We can easily extend this
to any single-signed decomposition [Belhe et al. 2024].

Texture optimization with direct illumination. rveectMarginal and
positivized variants provide the theoretical underpinning for using
RCV to differentiable rendering. Now, we consider optimizing a
mixture BRDF with three parameters (𝑀 = 3):

𝑓 = 𝒘 · Oren–Nayar(𝝈) + (1 −𝒘) · Isotropic-GGX(𝜶 ), (27)

where𝑤 is the mixture weight, 𝜎 is Oren-Nayar roughness and 𝛼 is
isotropic GGX roughness. Belhe et al. [2024] described methods for
importance sampling the derivative of each parameter individually.
Applying positivization to 𝜕𝛼 and mixture decomposition to 𝜕𝑤 and
𝜕𝜎 , we obtain six integrands and six corresponding auxiliaries.
In Fig. 23, we compare path replay backpropagation (PRB) [Vicini

et al. 2021], entry-wise BRDF derivative importance sampling [Belhe
et al. 2024] and PRB with our ratio control variates, under direct il-
lumination. The results demonstrate robust improvements achieved
by our method across various settings. Under direct illumination,
whether a path will touch a texel is determined solely by camera
rays, as shown in Fig. 20 (a). In this case, the variance in𝐻 is entirely
due the to the random sampling of the pixel footprint.

Texture optimization with global illumination. To further highlight
the marginal RCV’s ability to handle stochastic 𝐻 estimation and
multiple bounces, we compare our methods with PRB under 1-
bounce global illumination, incorporating indirect contributions. As
illustrated in Fig. 20 (b), the estimation of Eq. (26) becomes stochastic
in this scenario. Fig. 24 shows that our methods can improve upon
the PRB baseline across various settings.
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Fig. 23. Texture optimization under direct illumination.We optimize a 5122

texture that stores all three parameters of the mixture material, under equal
sample comparison (80 primal and 12 gradient SPP). When the initial state
is glossy, the gradient variance is dominated by the BRDF derivative, so
our approach significantly improves upon PRB. When the initial state is
diffuse, the gradient variance is dominated by lighting and visibility, and our
approach becomes much better than entry-wise BRDF derivative sampling,
which effectively have only 1/3 samples per parameter. In most cases, our
approach outperforms both baselines.

Performance. In forward rendering, applying ratio control vari-
ates to per-pixel integrands incurs only a few additional arithmetic
operations that can efficiently be carried out in registers. However,
in differentiable rendering, auxiliary information needs to be accu-
mulated per parameter and using atomic additions. In Fig. 24, the use
of RCV incurs an overhead of around 29% for each gradient sample,
compared to the PRB baseline. However, the overall gradient com-
putation time remains almost identical, since we take significantly
more primal samples (80 SPP) than gradient samples (1 SPP). This
is a common strategy to reduce the influence of primal rendering
noise [Azinović et al. 2019]. We believe more advanced optimiza-
tion of atomic accumulation [Bangaru et al. 2023, Section 4.3] or a
parameter-oriented formulation [Chang et al. 2023; Nimier-David
et al. 2021] could reduce the overhead of RCV.

Table 3. Comparison of performance on Fig. 24

Setting Forward Inverse (PRB) Inverse (Ours)

𝛼 = 5𝑒−3 56 ms / 80 SPP 2.6 ms / 1 SPP 3.4 ms / 1 SPP
𝛼 = 5𝑒−2 96 ms / 80 SPP 4.1 ms / 1 SPP 6.1 ms / 1 SPP

glossy surface
with fixed 
roughnesscamera

viewport

2.1898

1.9807

0.0869

0.0459

18.4543

6.6685

Optimize

initialization target

∂α MSE[∂α]∂σ MSE[∂σ]∂w MSE[∂w]

PR
B

O
ur

s

M
SE

 o
f i

m
ag

e

iterations

+2.0 0.0 +30.0 0.0 +2.0-1.0 +1.0 0.0 +80.0-5.0 +5.0

Optimize

initialization target

∂α MSE[∂α]∂σ MSE[∂σ]∂w MSE[∂w]

PR
B

O
ur

s

M
SE

 o
f i

m
ag

e

iterations

-1.0 +1.0 0.0 +10.0 0.0 +1.0-0.5 +0.5 0.0 +80.0-5.0 +5.0

0.9976

0.82

0.0385

0.016

6.1477

4.3954

-2.0

sp
ec

ul
ar

 (α
=0

.0
05

)
gl

os
sy

 (α
=0

.0
5)

se
tu

p

texture to
optimize

Fig. 24. Texture optimization under indirect illumination. We optimize a 5122

texture that stores all three parameters of the mixture material, under
equal sample comparison (80 primal and 1 gradient SPP). All derivatives
are contributed from the indirect bounces over the glossy panel. Increasing
the specular roughness of the panel increases the noise of our estimation
of 𝐻 (Eq. (26)) However, thanks to marginalization, our method can achieve
improvements across various specularities of the panel. While the improve-
ment on the final loss value is not significant on this scene, we believe that
variance reduction will benefit future use of inverse rendering.

Memory overhead. Applying our method in inverse path tracing
requires an additional buffer to accumulate auxiliary values, espe-
cially when positivization is needed.In that case, each parameter
stores five floating-point values: 𝑓 +, 𝑓 − , ℎ+, ℎ− , ℎmarginal.

5.3.2 Stochastic derivative-free optimization. When a differentiable
renderer is not accessible, we may still have a renderer capable of
generating an image I(𝜃 ) for arbitrary parameters 𝜃 to compute a
loss L(I(𝜃 )). In this case, we can stochastically estimate the deriva-
tives using ideas from derivative-free optimization [Rechenberg
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Ref: [0.0, 0.0] Init: [0.5, 0.5]

Fig. 25. Optimization of a rigid transformation. We optimize both (a) the
rotation along the y-axis (𝜃1) and (b) the translation along the x-axis (𝜃2) of
a mug. (c) The reference image. (d) The initial state.
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Fig. 26. RCV for first- and second-order derivatives estimation. With two
parameters to optimize, the rendering loss has to be convolved with five
different kernels to estimate the first- and second-order derivatives. Our
RCV significantly reduces the mean absolute error of these derivatives (as
reported in the inset text), compared to importance sampling using the
average of distributions corresponding to these kernels.

and Eigen 1973; Spall 1992; Staines and Barber 2012; Wierstra et al.
2014], by smoothing the loss through perturbing parameters:

min
𝜃

L(I(𝜃 )) ≤ min
𝜃 ′

𝐸𝜃∼𝑝 (𝜃 |𝜃 ′ ) [L(I(𝜃 ))] = min
𝜃 ′

L∗ (𝜃 ′), (28)

where 𝑝 (𝜃 |𝜃 ′) is usually the density a multivariate Gaussian distri-
bution whose mean is parameterized by 𝜃 ′, and the covariance is
usually set to 𝜎2 · 𝐼 for some standard deviation 𝜎 .
Previous work [Deliot et al. 2024; Fischer and Ritschel 2023;

Le Lidec et al. 2021; Wang et al. 2024] has applied the idea to es-
timate the derivatives of rendering. Both first- and second-order
derivatives of the Gaussian mean 𝜃 ′ can be estimated unbiasedly
without ever having access to the rendering derivative:

∇𝜃 ′L∗ =
∫
Θ
∇𝜃 ′𝑝 (𝜃 |𝜃 ′)L (I(𝜃 )) d𝜃, (29)

∇2
𝜃 ′L

∗ =
∫
Θ
∇2
𝜃 ′𝑝 (𝜃 |𝜃

′)L (I(𝜃 )) d𝜃, (30)

whereΘ is the domain of the parameters and ∇2
𝜃 ′

is the operator that
computes the Hessian matrix with respect to 𝜃 ′. These derivatives
can then be used in a gradient-based optimizer (e.g., Adam) or even
a second-order optimizer (e.g., Newton’s method).

The integrals above are vector-valued, and thus the variance can
be reduced using our ratio control variates. We apply our ratio

Adam w/o RCV

Newton’s w/o RCV

(Ours) Newton’s w/ RCV

(Ours) Adam w/ RCV

Iterations

M
SE

Fig. 27. We plot the mean squared error (MSE) of the optimized parameters
[𝜃 ′

1, 𝜃
′
2 ] over optimization iterations, with 16 images rendered per iteration

to estimate gradients and Hessians. The shaded region indicates the vari-
ance of the MSE across 50 optimization runs, while the solid line is the mean.
We compare both first-order optimization (using Adam) and second-order
optimization (using Newton’s method), demonstrating that RCV signifi-
cantly enhances the efficiency and robustness of the optimization process.

w/o RCV MSE: 0.0177 w/ RCV (Ours) MSE: 0.0105

Bu
nn

y
Fig. 28. RCV on Walk on Sphere. We apply RCV to sample chromatic source
terms in the Walk on Sphere method, using 20 walks per pixel, achieving
significantly reduced MSE.

control variates on Wang et al. [2024]’s positivized distributions.
We apply our estimators to optimize the rigid pose of an object, see
Fig. 25 for the problem setup. Fig. 26 and Fig. 27 show that our ratio
control variates significantly reduce variance. 5 6

5.4 Discussion and future work
Applications beyond rendering. Our techniques may also benefit

applications beyond rendering. For example, Monte Carlo Walk on
Spheres (WoS) [Sawhney and Crane 2020] shares many similarities
with rendering. As illustrated in Fig. 28, we show that RCV could
be beneficial to sample chromatic source terms, and it should be
promising to further extend to vector-valued Green’s functions and
chromatic spatially-varying coefficients [Sawhney et al. 2022].

Accuracy of auxiliary functions. Well-correlated auxiliary func-
tions are important for RCV to be helpful. In the supplementary
material, we present amethod to estimate the confidence of auxiliary
functions, allowing interpolation between vanilla Monte Carlo and
RCV based on confidence levels. However, this approach requires
estimating additional constants through regression, making it less
effective at low sample counts. It is also interesting to investigate
how to combine RCVwith RIS-based sampling methods, which have
no explicit PDF formula, such as ReSTIR [Bitterli et al. 2020].

Other quantitative error metrics. Ratio control variates has been
proven to be efficient in reducing MSE. We show that in practice
it may achieve improvements under FLIP, relative MSE (Fig. 8),
5To handle non-convex loss landscape, we modify the Hessian to ensure it is positive-
definite, and clamp the gradient step length to prevent excessively large values.
6While our approach targets variance reduction, it is orthogonal to and does not dimin-
ish the contributions of Wang et al. [2024], which enable higher-order differentiability.
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and 𝐿1 error (Fig. 26), but these are less guaranteed. Since MSE is
not always the best metric for rendering and gradients, develop-
ing vector-valued variance reduction techniques tailored to other
metrics would be an interesting direction for future work.

6 CONCLUSION
We formalize vector-valued integration as a common pattern in
forward and inverse rendering. We found that ratio control variates
are a powerful and underexplored tool to reduce variance for such
problems. Our methods can directly leverage existing importance
sampling distributions to construct both consistent and unbiased
estimators. Not only are ratio control variates applicable to a wide
range of rendering problems, but their implementation is most often
very simple and has neglibible computational and memory over-
heads. We hope that our methods can benefit other applications of
vector-valued Monte Carlo integration in computer graphics and
scientific computing.
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A DEFENSIVE AUXILIARY FUNCTIONS
In the basic ratio estimator Eq. (9), the denominator,

∑
ℎ(𝑋𝑖 )/𝑔(𝑋𝑖 ),

is a Monte Carlo estimator of𝐻 . At low sample counts, the estimator
might become zero or very small, leading to numerical issues. Fig. 29
shows an example where this could happen.

f₁ f₂ h₁ h₂ g

Xi

(a) Integrands 𝑓𝑖 (b) Auxiliaries ℎ𝑖 (c) Sampling distrib. 𝑔

Fig. 29. (a) The overlap between the supports of integrands is sometimes
small. (b) Auxiliaries typically share the same support as their corresponding
integrands, if we directly use their importance sampling PDF as ℎ. (c) To
cover the union of the integrands’ supports, we often sample from mixtures
of auxiliaries, resulting in samples like𝑋𝑖 . However, hereℎ1 (𝑋𝑖 ) will become
very small or even zero.

One practical solution is to heuristically discard the problematic
zero denominators and fall back to the classical Monte Carlo esti-
mator by considering only the numerator. While this approach can
work for basic RCV, it is incompatible with the unbiased Hartley-
Ross estimator. Moreover, the HR estimator involves a sum of ratios,∑𝑁
𝑖=1

𝑓𝑗 (𝑋𝑖 )
ℎ 𝑗 (𝑋𝑖 ) . As a result, any single problematic sample can cause

numerical issues, regardless of the sample count.

× 0.99 + × 0.01 =h₁ uniform h₂

(a) Original auxiliaries ℎ𝑖 (b) Uniform distrib. 1 (c) Composite auxiliaries ℎ′𝑖
Fig. 30. (a) Original auxiliary function matches the integrands well but
may have zero values over parts of the domain. (b) A uniform distribution
ensures non-zero values across the domain but poorly matches 𝑓𝑖 . (c) By
linearly interpolating them, the newly composed auxiliary satisfies both
requirements.

To address this issue, we must ensure that ℎ(𝑋𝑖 ) is neither zero
nor extremely close to it. Inspired by defensive sampling [Owen
and Zhou 2000], we propose linearly blending ℎ𝑖 with a uniform dis-
tribution, as illustrated in Fig. 30. The resulting composite function
ℎ′ (𝑥) is guaranteed to remain non-zero across the entire domain
while preserving an analytical integral of 1. Using defensive aux-
iliary functions effectively preserves the unbiasedness of the HR
estimator.
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