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Fig. 1. (a) The Veach Ajar scene is lit by a directional light source behind the door, and so only a small section of the room receives direct illumination. (b) An
illustration of our bounding voxel data structure, which stores irradiance and geometry information for each voxel. (c) An illustration of our voxel path-guiding
algorithm (VXPG), which guides paths to high-contribution voxels. (d-e) Comparison of BSDF sampling vs VXPG sampling for 2-bounce global illumination.

We propose a real-time path guiding method, Voxel Path Guiding (VXPG),

that significantly improves fitting efficiency under limited sampling budget.

Our key idea is to use a spatial irradiance voxel data structure across all

shading points to guide the location of path vertices. For each frame, we first

populate the voxel data structure with irradiance and geometry information.

To sample from the data structure for a shading point, we need to select

a voxel with high contribution to that point. To importance sample the

voxels while taking visibility into consideration, we adapt techniques from

offline many-lights rendering by clustering pairs of shading points and

voxels. Finally, we unbiasedly sample within the selected voxel while taking

the geometry inside into consideration. Our experiments show that VXPG

achieves significantly lower perceptual error compared to other real-time

path guiding and virtual point light methods under equal-time comparison.

Furthermore, our method does not rely on temporal information, but can

be used together with other temporal reuse sampling techniques such as

ReSTIR to further improve sampling efficiency.
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1 INTRODUCTION
Rendering scenes with complex visibility and strong indirect illu-

mination in real-time requires finding good importance sampling

distributions. Path guiding techniques are a popular importance

sampling approach for offline rendering, but directly applying them

is particularly challenging, since real-time computation budgets

only allow for one to two light path samples per pixel per frame for

learning the sampling distribution. Real-time rendering methods

therefore often heavily rely on temporal information, but this can

cause temporal artifacts and slow guiding distribution adaptation

under complex dynamic scenes. Fig. 2 shows an example with chal-

lenging visibility where all the light paths need to go through the

half-closed door to light the scene. Most samples do not help locate

the sparse contribution as seen in Fig. 2(e). In this paper, we propose

a new real-time path guiding method, Voxel Path Guiding (VXPG),

which uses an efficient representation of the incoming radiance dis-

tribution which is simple to learn under limited sampling budgets

and does not rely on temporal reuse.

Our key idea is to reuse a spatial irradiance representation across

all shading points (Fig. 1 and Fig. 2(f)). We propose a bounding voxel

data structure that stores both the irradiance and geometry informa-

tion at each voxel. For each frame, we first populate the voxel data

structure. Next, we sample from the voxel data structure for each

shading point by first selecting a voxel and then shooting a ray from
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Fig. 2. Given a shading point 𝑥 (a), our goal is to fit a target distribution (d), shown in cylindrical coordinates [Lambert 1770] (c), using a small amount of
samples per pixel. Path guiding algorithms learning spatial-directional distributions often rely on local samples in a spatial partition. However, if the path
contribution is sparse, local samples are not sufficient for reconstructing the target distribution (e), as only green samples have positive contributions. In
contrast, our pipeline (f) uses all samples across the whole image to construct a global spatial distribution, mitigating the issue of insufficient information
caused by using only local samples. However, blindly selecting a voxel (g) could result in connections with invisible surfaces (h). Notably, in the case of the door,
it is only illuminated on the backface. Therefore, we propose a new voxel selection strategy (i) which incorporates visibility to achieve a good distribution (j).

the shading point towards a point in the sampled voxel. Compared

to the traditional 5D spatial-directional distribution, our bounding

voxel data structure significantly improves fitting efficiency since it

reuses samples across all shading points.

Naïvely sampling from the voxels using only the irradiance infor-

mation is suboptimal since it ignores both visibility and materials

(Fig. 2(g) and (h)). We adapt techniques in offline many-lights sam-

pling [Hašan et al. 2007; Ou and Pellacini 2011] by clustering pairs

of shading points and voxels and building sampling distributions.

Finally, once we select a voxel, we need to sample a point to

connect the path to the surface inside the voxel. This introduces two

challenges: 1) We need to compute the probability density of a ray

landing on a surface in the voxel, which can be intractable for real-

time rendering. 2) The limited resolution of the voxel representation

can cause the rays to miss the actual geometry inside. To tackle the

challenges, we store the bounding volume of the geometry for each

voxel. We then propose an unbiased and efficient sampling strategy

to sample from the solid angle subtended by the bounding volumes.

While our method is primarily designed for first-bounce indirect

illumination, we have observed its utility in addressing multiple-

bounce indirect lighting. The irradiance-based representation im-

poses limitations on guiding caustics, but we can effectively handle

most specular transport through approximate product sampling.

Our equal-time comparisons show that our method significantly

improves the perceptual error (we use FLIP [Andersson et al. 2020])

over other real-time path guiding and virtual point light methods

for challenging scenes with complex visibility. Furthermore, our

method does not rely on temporal reuse, but can be used together

with other temporal reuse methods such as ReSTIR [Ouyang et al.

2021], to further improve sampling efficiency.

In summary, our contributions are:

• We introduce a bounding voxel data structure that stores the

irradiance and geometry information for reusing information

across all shading points for real-time path guiding.

• For sampling a voxel from a shading point while taking visi-

bility and materials into consideration, we adapt offline many-

light sampling methods to cluster pairs of shading points and

voxels in real-time.

• We propose an efficient and unbiased way to sample a point

inside a bounding voxel while taking the geometry inside the

voxel into account.

2 RELATED WORK
Path guiding. Path guiding methods reuse previously traced light

paths to fit an importance sampling distribution [Vorba et al. 2019].

Previous work often represents incoming radiance using a 5D

spatial-directional distribution. Popular representations include adap-

tive histograms [Jensen 1995; Lafortune and Willems 1995; Müller

et al. 2017], cosine lobes [Bashford-Rogers et al. 2012], Gaussian

mixture models (GMMs) [Vorba et al. 2014], von-Mises-Fisher (vMF)

distributions [Ruppert et al. 2020], or neural networks [Müller et al.

2019].While originally designed for offline rendering, these methods

have been adapted to real-time rendering. The real-time variants

have to use much simpler distributions (e.g., a Gaussian or vMF

lobe per-pixel [Derevyannykh 2022; Dittebrandt et al. 2023], or a

coarse histogram [Dittebrandt et al. 2020; Kim and Kim 2021]), and

often have to rely on temporal reuse [Derevyannykh 2022; Ditte-

brandt et al. 2020, 2023; Pantaleoni 2020] or offline training [Kim

and Kim 2021] to improve sampling efficiency. We instead represent

irradiance in 3D bounding voxels. Our representation significantly

increases sample reuse across pixels, and does not require temporal

reuse or offline training. Furthermore, our spatial representation

is automatically “parallax-free” and does not require rotation of a

directional distribution [Ruppert et al. 2020].
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Our representation is related to the spatial representation used in

the Focal Path Guiding work [Rath et al. 2023], in which they store

the spatial density of light paths to automatically find “focal points”

wheremany light pathsmeet. Ourmethod differs in threemainways:

1) Focal Path Guiding is designed for offline rendering, while our

method runs in real-time with a more efficient process to inject light

paths to voxels. As a result, our voxels store irradiance instead of

light path density. 2) We additionally take the contribution between

the shading point and the spatial distribution in consideration when

sampling. 3) We propose an efficient and unbiased sampling strategy

for sampling points inside a bounding voxel, without the need to

compute an integral for the probability density.

Virtual point lights and many-lights sampling. Our method can

be broadly seen as a virtual point light (VPL) method [Dachsbacher

et al. 2014; Keller 1997]. These methods first trace a batch of light

paths, then in a second pass connect to the vertices of the light

paths from the shading points. In a sense, VPL methods can be

seen as path guiding with spatial Dirac delta distributions as the

representation. For instance, power-based sampling orients the path

towards regions with high radiance without considering visibility.

Traditionally, the VPLs are created by light tracing [Keller 1997].

It is also possible to create VPLs from path tracing. These VPLs are

often only connected to nearby pixels [Bekaert et al. 2002; Davi-

dovič et al. 2010]. This is because connecting these VPLs to a large

set of shading points requires costly probability density function

estimation [Segovia et al. 2006] and usually leads to bias.

Many-lights sampling is crucial for effectively sampling from a

substantial number of lights, including both direct light sources and

VPLs. A popular way is to build a hierarchical data structure that

encodes information of a cluster of VPLs [Lin and Yuksel 2020; Liu

et al. 2019; Moreau et al. 2019; Pantaleoni 2019; Paquette et al. 1998;

Shirley et al. 1996; Vévoda et al. 2018; Walter et al. 2005; Wang et al.

2021; Yuksel 2020]. Alternatively, some methods cluster the VPLs

by sampling the light transport matrix [Hašan et al. 2007; Ou and

Pellacini 2011; Wu and Chuang 2013], where each element of the

matrix accounts for the contribution of a light to a pixel sample. We

adapt the light transport matrix sampling methods in a real-time

setting to importance sample a bounding voxel from a shading point,

while taking visibility and materials into consideration.

Our method is connected to VPL methods that “enlarge” the VPLs

into an area [Hašan et al. 2009; Li et al. 2022; Simon et al. 2015;

Tokuyoshi 2015]. Typically, the goal of these methods is to handle

glossy reflections with VPLs, while our goal is to handle indirect

illumination with complex visibility in real-time. Our method is

also highly related to Stochastic Substitute Trees [Tatzgern et al.

2020], which is a real-time VPL sampling technique based on a

continuous distribution with a spatial partition. Our method differs

from Stochastic Substitute Trees in a few ways: we take the visibility

between shading points and the spatial distribution into account, and

our intra-voxel sampling is aware of the solid angles subtended by

the bounding voxels. We generate the spatial distribution using path

tracing, instead of light tracing. Lastly, our sampling is unbiased.

ReSTIR. In real-time rendering, it has become popular to reuse

temporal information for sampling. In particular, ReSTIR [Bitterli

et al. 2020] and its global illumination variants ReSTIR-GI [Ouyang

Table 1. Summary of paper notation.

𝑥 A general path vertex on the scene surfaceM.

𝑥 ′ The previous path vertex to 𝑥 .

𝑥0 The first path vertex at the camera.

𝑥1, 𝑥𝑖1 The second path vertex, i.e. shading points.

𝑥2, 𝑥𝑖2 The third path vertex, visible from 𝑥1.

𝜔i, 𝜔o The incoming/outgoing direction.

𝑦 The next vertex sampled to extend current path at 𝑥 .

𝑦′ A sample used for finding vertex y.

𝑣𝑖 A bounding voxel.

𝐼𝑖 The average irradiance ofM𝑣𝑖 .

𝑏𝑖 An AABB boundingM𝑣𝑖 .

Ω The upper hemisphere.

M The scene surface.

M𝑣𝑖 The portion of the scene surfaceM enclosed by voxel 𝑣𝑖 .

et al. 2021] and ReSTIR-PT [Lin et al. 2022] employ resampling [Tal-

bot et al. 2005] using samples drawn from spatial-temporal neigh-

bors for each pixel. Our method alone does not rely on any temporal

information. However, our method can also be used as a candidate

sampling distribution for ReSTIR-GI to incorporate temporal reuse,

which we demonstrate in the evaluation.

3 BACKGROUND
We summarize the notation we use in Table 1.

Rendering Equation. The reflected radiance at a point 𝑥 in the

outgoing direction 𝜔o is described by the integral [Kajiya 1986]

𝐿(𝑥,𝜔o) = 𝐿𝑒 (𝑥,𝜔o) +
∫
Ω
𝐿𝑖 (𝑥,𝜔i) 𝑓𝑟 (𝑥,𝜔o, 𝜔i) |cos𝜃i | d𝜔i, (1)

where 𝐿𝑒 is the light emission, 𝐿𝑖 is the incoming radiance, and 𝑓𝑟
is the Bidirectional Scattering Distribution Function (BSDF). The

radiance is computed by integrating over all incoming directions 𝜔i,

and recursively evaluating 𝐿𝑖 . This integral can also be rewritten to

instead integrate over all points 𝑦 on all surfacesM:

𝐿(𝑥 → 𝑥 ′) = 𝐿𝑒 (𝑥 → 𝑥 ′)+∫
M

𝐿𝑖 (𝑦 → 𝑥) 𝑓𝑟 (𝑦 → 𝑥 → 𝑥 ′)𝐺 (𝑦 ↔ 𝑥)𝑉 (𝑦 ↔ 𝑥) d𝐴(𝑦),
(2)

where 𝑥 ′ is the previous path vertex,𝐺 is the geometry term, and𝑉

is the visibility term.

Monte Carlo Integration. Equation 1 can be estimated usingMonte

Carlo integration with a single sample by sampling a direction 𝜔i,

evaluating the integrand, and dividing by the PDF of the direction:

⟨𝐿(𝑥, 𝜔o)⟩ = 𝐿𝑒 (𝑥, 𝜔o) +
⟨𝐿𝑖 (𝑥,𝜔i)⟩𝑓𝑟 (𝑥, 𝜔o, 𝜔i) |cos𝜃i |

𝑝 (𝜔i |𝑥,𝜔o)
. (3)

Eq. (2) can be estimated in a similar way by sampling and evaluating

𝑦 instead. If 𝑝 > 0 whenever the integrand is positive, then the

estimator is unbiased and E[⟨𝐿⟩] = 𝐿. When the estimator is unbi-

ased, the error of Monte Carlo integration is given by the variance

of the estimator, which is zero when 𝑝 is exactly proportional to
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Fig. 3. (a) A bunny in a box lit by a spotlight. (b) Before VXPG sampling,
we construct a voxel representation of the scene, including irradiance and
geometry information (Section 5.1). (c) During VXPG sampling, for every
shading point 𝑥 , we first randomly select one voxel from the entire set to
connect with (Section 5.2). (d) After that, we find the next vertex 𝑦 within
the selected voxel in a fast and unbiased way (Section 5.3).

the integrand. Importance sampling therefore aims to construct a

density 𝑝 which is approximately proportional to the integrand.

Path Guiding. Path guiding methods learn to sample high contri-

bution paths by using previously sampled paths to fit the density 𝑝

so that it approximates the integrand in Equation 1, to obtain low

variance. The full integrand is 7D however (3D for 𝑥 , 2D for 𝜔𝑖 , and

2D for 𝜔𝑜 ), and so previous work typically instead aims to fit a 5D

distribution 𝑝 (𝜔i |𝑥) which is independent of the outgoing direction.

This is done by discretizing the dimensions using subdivision struc-

tures [Derevyannykh 2022; Müller 2019; Ruppert et al. 2020; Vorba

et al. 2014], or directly learning in 5D [Dodik et al. 2022; Dong et al.

2023]. However, the low number of samples generated per frame

in real-time rendering is still insufficient to accurately fit this 5D

distribution (Fig. 2(c)). As a result, previous work [Derevyannykh

2022; Dittebrandt et al. 2020] relies on temporal reuse to improve

the guiding distribution, but then the distribution lags in time and

is unable to quickly adapt to dynamic scenes.

4 OVERVIEW
We propose a real-time path guiding algorithm. Our method can

fit the sampling distribution at low sample counts, and does not

rely on temporal information. To achieve this, instead of learning a

local 5D distribution 𝑝 (𝜔i |𝑥) representing the directional sampling

density for𝜔i at each point 𝑥 , we propose to learn a global 3D spatial

distribution similar to 𝑝 (𝑦), shared by all shading points. Inspired

by next event estimation, this 3D distribution guides the location of

the next path vertex 𝑦.

Our approach offers two advantages: First, a spatial distribution

naturally eliminates parallax issues during sampling [Ruppert et al.

2020], and second, fewer samples are needed to learn the distribution

due to its reduced dimensionality, and so it can be rebuilt from

scratch at every frame to quickly adapt to dynamic scenes.

However, simply sampling from 𝑝 (𝑦) for different shading points
can be inefficient, since it ignores the visibility and BSDF terms [Rath

et al. 2023]. In complex scenes, many paths will be occluded, lim-

iting the guiding efficiency (Fig. 2(g)). Instead, we sample from a

conditional distribution 𝑝 (𝑦 |𝑥) for different shading points, which
approximates the desired 5D density, while only storing a 3D spatial

distribution.

To do this efficiently in real-time, we propose a novel two-stage

sampling method, bounding voxel sampling (Section 5, Fig. 2(e)).

We bound the scene in a set of voxels {𝑣0, . . . , 𝑣𝑛−1}, each of which

stores irradiance and geometry information. In the first stage, for

each shading point 𝑥 , we select one voxel from the entire set by

sampling a conditional probability 𝑝vs (𝑣𝑖 |𝑥). This stage is akin to

many-lights sampling [Bitterli et al. 2020; Hašan et al. 2007; Moreau

et al. 2022; Ou and Pellacini 2011; Shirley et al. 1996; Yuksel 2019].

In the second stage, we sample the point 𝑦 within the selected voxel

with 𝑝 (𝑦 |𝑣𝑖 ), analogous to area light sampling [Arvo 1995; Gamito

2016; Peters 2021; Ureña et al. 2013].

Bounding voxel sampling therefore samples:

𝑝 (𝑦 |𝑥) = 𝑝 (𝑦 |𝑣𝑖 )𝑝vs (𝑣𝑖 |𝑥), (4)

with the conditioning in the voxel selection stage providing local

adaptivity and accounting for both visibility and BSDF.

Fig. 3 illustrates an overview of our pipeline. It begins by popu-

lating voxels with irradiance and geometry information (Fig. 3(b),

Section 5.1). Then, for each shading point, we select one voxel ac-

cording to a distribution 𝑝vs considering power, BSDF, and visibility

(Fig. 3(c), Section 5.2). Finally, we sample the next path vertex 𝑦

within the selected voxel (Fig. 3(d), Section 5.3).

5 BOUNDING VOXEL SAMPLING
In Sections 5.1-5.3, we discuss the construction and sampling of

bounding voxels for our VXPG algorithm. We focus on the case of

first-bounce indirect illumination. Section 5.4 then details combin-

ing bounding voxel sampling with BSDF sampling using multiple

importance sampling to make the algorithm robust. Section 5.5 dis-

cusses extending the first-bounce case to direct illumination, as well

as further bounces. We provide more details of our implementation

in the supplementary material.

5.1 Construct Bounding Voxels
Bounding voxels. To construct our spatial distribution, we uni-

formly partition the scene using voxels {𝑣0, . . . , 𝑣𝑛−1}. Each voxel

𝑣𝑖 encloses a portion of the scene surface M, which we denote

as M𝑣𝑖 = M ∩ 𝑣𝑖 . Each voxel 𝑣𝑖 stores the average irradiance of

M𝑣𝑖 , 𝐼𝑖 , and an axis-aligned bounding box (AABB) 𝑏𝑖 ⊆ 𝑣𝑖 , which

tightly bounds M𝑣𝑖 . We refer to this structure as "bounding voxel",

emphasizing its dual characteristics: the bounding volume feature

provided by 𝑏𝑖 and the spatial partitioning nature of the voxels. Both

characteristics are essential for unbiased sampling in Section 5.3.

Light injection. We call the process of assigning irradiance to

voxels "light injection", a concept borrowed from voxel-based global

illumination (VXGI) [Crassin et al. 2011]. In our method, assigning

positive irradiance to completely invisible voxels is undesirable,

since paths can be guided to occluded regions. Therefore, injecting

light information through voxelization [Crassin et al. 2011] or light

tracing [Hašan et al. 2009; Keller 1997] is suboptimal.

Instead, we inject light by tracing paths from the camera and place

a virtual light at the first hit of the indirect bounce
1
. These points,

which we denote as 𝑥2, are guaranteed to contribute to the image,

since they are visible from some shading points. In particular, we

trace a BSDF ray for each shading point and populate the irradiance

of vertex 𝑥2 into the voxel in which 𝑥2 is located. We define the

1
This is similar to Reverse Instant Radiosity [Segovia et al. 2006], but we do not need

to compute an intractable PDF for unbiased results.
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(a) (b) (c) (d) (e)

Fig. 4. Different geometry compaction strategies to compute the bounding
box 𝑏𝑖 . In this example, a triangle intersects with a voxel, and only the
light gray portion of the triangle has non-zero irradiance. (a) Voxel bounds.
(b) Intersection of the voxel and the bounding box of the triangle. (c) Our
method: The triangle is clipped against the voxel to produce tight bounds.
(d) A non-conservative bound using all second-bounce vertices in the voxel.
(e) Optimal bounding box.

voxel irradiance 𝐼𝑖 as the average irradiance of all vertices injected

to it:

𝐼𝑖 =
1

𝑛𝑖

∑︁
𝑥 𝑗

2
∈𝑣𝑖

𝐸 (𝑥 𝑗2 ), (5)

where 𝑛𝑖 is the number of vertices injected into voxel 𝑣𝑖 , and 𝐸 (·) is
the irradiance of each vertex

2
. We only evaluate direct lighting for

𝐸 (𝑥 𝑗2 ), as we are focusing on one-bounce indirect illumination.

Geometry injection. The second part of the bounding voxel is

the AABB 𝑏𝑖 . This is important because as shown in Fig. 3(d), the

voxel 𝑣𝑖 often only provides a loose bound for the surfaceM𝑣𝑖 . In

the intra-voxel sampling step, further explained in Section 5.3, we

need to sample a point within the voxel. Sampling a point on the

more compact 𝑏𝑖 rather than directly on 𝑣𝑖 increases the chance of

selecting a point that lies on the surface.

To inject geometry information and create𝑏𝑖 , we apply rasterization-

based voxelization [Crassin and Green 2012]. When we detect that

a triangle overlaps with a voxel, we compute an AABB of their

intersection and then combine them using atomic operations.

However, simply intersecting the voxel with the bounding box of

the triangle often does not result in full compactness, as illustrated

in Fig. 4(b). We use the Sutherland–Hodgman algorithm [1974] to

clip the triangle against the voxel and compute its own bounds

accordingly, as demonstrated in Fig. 4(c).

In principle, the ideal AABB 𝑏𝑖 should bound only the portion

of the geometry with non-zero irradiance, as illustrated in Fig. 4(e).

However, obtaining this AABB exactly is not feasible in practice.

Estimating it by, for example, calculating a bounding volume for

all vertices within the voxel, as depicted in Fig. 4(d) leads to a non-

conservative bound and may lead to temporal instability, especially

when the vertex count is low. We need a conservative bound so that

we do not miss sampling geometry with non-zero radiance.

5.2 Voxel Selection
Once the bounding voxels are constructed, we sample a voxel 𝑣𝑖
for each shading point 𝑥1 using a probability mass function (PMF)

𝑝vs (𝑣𝑖 |𝑥1). Ideally, we want the PMF to be proportional to the square

root of the second moment of the contribution estimator [Pantaleoni

2
Strictly speaking, 𝐸 ( ·) here does not represent irradiance, which should be integrated

over the hemisphere. In our case, we cannot guarantee full coverage of the domain but

still borrow the term for simplicity.

and Heitz 2017; Rath et al. 2020; Vévoda et al. 2018], where the

contribution is defined as:

∫
M𝑣𝑖

𝐿𝑖 (𝑦 → 𝑥1) 𝑓𝑟 (𝑦 → 𝑥1 → 𝑥0)𝐺 (𝑦 ↔ 𝑥1)𝑉 (𝑦 ↔ 𝑥1)𝑑𝐴(𝑦) .

(6)

However, estimating this contribution for all voxel-shading point

pairs is costly. Instead, we observe that selecting voxels is similar

to selecting light sources in many-light sampling, and it can, in

fact, be viewed as selecting a "virtual voxel light" with emission

𝐼𝑖 and bounds 𝑏𝑖 . Consequently, we can leverage existing work in

many-lights sampling [Bitterli et al. 2020; Hašan et al. 2007; Moreau

et al. 2022; Ou and Pellacini 2011; Shirley et al. 1996; Yuksel 2019]

to construct the voxel selection distribution 𝑝vs.

A simple method is to select a voxel with probability proportional

to its power [Shirley et al. 1996]:

Φ(𝑣𝑖 ) = 𝐼𝑖 · 𝐴(𝑣𝑖 ), (7)

where 𝐴(𝑣𝑖 ) is the surface area of M𝑣𝑖 . We approximate 𝐴 using

the surface area of the largest of the 6 faces of 𝑏𝑖 .

Since the bounding voxels are shared across all shading points,

sampling them based on power ignores the visibility, geometry, and

BSDF terms in Eq. (6). While our light injection method partially

mitigates this by ensuring that voxels with non-zero irradiance

are visible to some shading points, they can still be occluded to

others. We aim to estimate the contribution without querying visi-

bility between each pair of shading points and voxel, which would

be prohibitively expensive. Inspired by previous work in many

lights sampling [Hašan et al. 2007; Ou and Pellacini 2011; Wu and

Chuang 2013] and probabilistic connections of bidirectional path

tracing [Popov et al. 2015; Su et al. 2022], we assume the contribu-

tion is locally similar, and use clustering to reduce the number of

visibility queries. We group pixels and voxels into clusters, referred

to as superpixels and supervoxels, respectively. Then, we estimate

an average throughput for each superpixel-supervoxel pair, provid-

ing an approximation of the product of visibility, geometry, and

BSDF. This process is depicted in Fig. 5. Below we detail each step.

Superpixel and supervoxel clustering. We base our method on

the SLIC superpixel algorithm [Achanta et al. 2012] for superpixel

clustering, taking into account geometry similarity. Meanwhile, we

adopt a simplified version of the K-means algorithm to group voxels

into supervoxels, based on visibility and irradiance information. The

supplementary material provides the details of the clustering.

Average throughput estimation. After clustering, we estimate the

average throughput for each superpixel-supervoxel pair. In a prepa-

ration stage, we figure out which shading points and 𝑥2 vertices

correspond to each superpixel and supervoxel. This stage also adds

surface normal information to each point so that backfacing sur-

faces can be rejected. Then, for each superpixel-supervoxel pair, we

select 32 pairs of shading points and 𝑥2 vertices within the cluster

pair, and query their binary visibility by tracing a ray (Fig. 5(c)). As

both ends of these rays are expected to be close, they are typically
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(a) Cluster shading points into superpixels.

(b) Cluster bounding voxels into supervoxels. (c) Average throughput

shading points

virtual point lights

occluder

superpixel

supervoxel

Fig. 5. The overview of our visibility-aware voxel selection algorithm. (a-b)
To reduce the number of visibility queries, we cluster the shading points
and voxels respectively. Then, for each pair of superpixel and supervoxel,
we cast multiple rays to estimate an average throughput that is the product
of visibility, BSDF, and geometry terms.

coherent and can be efficiently traced. The average throughput is:

T̄ =
1

32

31∑︁
𝑖=0

𝑓𝑟 (𝑥𝑖2 → 𝑥𝑖
1
→ 𝑥0)𝐺 (𝑥𝑖

2
↔ 𝑥𝑖

1
)𝑉 (𝑥𝑖

2
↔ 𝑥𝑖

1
) . (8)

Voxel selection. Next, we select voxels for each shading point as

follows. First, we identify the superpixel SPi of the shading point.

Next, we select a supervoxel SVj with probability proportional to the

product of average throughput and total power, T̄𝑖, 𝑗 ·
∑

𝑣𝑘 ∈𝑆𝑉𝑗
Φ(𝑣𝑘 ),

which approximately product sample the full contrbution: irradi-

ance, visibility and BSDF terms. Finally, we choose one voxel within

the supervoxel SVj based on power Φ as in Eq. (7).

5.3 Intra-Voxel Sampling
Bounding volume sampling. Once a voxel 𝑣𝑖 is selected, we need to

select the position of the path vertex within the voxel. The challenge

is that we cannot simply sample any point 𝑦′ ∈ 𝑏𝑖 , since the path

vertex must lie on the scene surfaceM.

Stochastic Substitute Trees [Tatzgern et al. 2020] handle this

by treating the sampled 𝑦′ as a VPL which introduces bias. The

probability density of this method is also intractable. Focal Path

Guiding [Rath et al. 2023] first maps 𝑦′ to a direction 𝜔𝑖 , where

𝜔𝑖 =
𝑦′−𝑥

∥𝑦′−𝑥 ∥ , and finds the exact vertex 𝑦 by ray casting.

However, since there are infinitely many 𝑦′ that map to the same

𝜔𝑖 , an integration is need to compute the probability density [Rath

et al. 2023; Simon et al. 2017]:

𝑝𝑑 (𝜔𝑖 |𝑥) =
∫ ∞

0

𝑝𝑠 (𝑥 + 𝑡𝜔𝑖 )𝑡2
d𝑡 . (9)

This is prohibitively expensive to compute for real-time applications,

as it requires traversing the entire voxel structure.

Instead, we propose bounding volume sampling, as illustrated in

Fig. 6(c). We first generate the primal sample 𝑦′ on the surface of

the AABB 𝑏𝑖 associated with the voxel. Next, we cast a ray from

𝑥 towards 𝑦′ in direction 𝜔𝑖 to obtain the path vertex 𝑦. Finally,

we check the position of 𝑦, accepting it if 𝑦 ∈ 𝑏𝑖 and discarding it

otherwise.

(a) directional sampling (b) next event estimation (c) bounding voxel sampling

Fig. 6. (a) In directional sampling, a primary sample 𝑦′ is taken from the
upper hemisphere, and a ray is cast to determine the vertex 𝑦 on the surface.
(b) NEE acquires the primary sample 𝑦′ directly from the geometry’s surface,
which corresponds to vertex 𝑦 itself. The ray is traced to assess visibility.
(c) In our bounding voxel sampling, the primary sample 𝑦′ is drawn from a
bounding voxel. We then trace a ray to locate vertex 𝑦.

P0
Q0

P0 Q0

P2
Q2

P1
Q1

x x

(a) (b)

Fig. 7. When the shading point 𝑥 is outside of the bounding box, there is at
least one (a) and at most three (b) surfaces facing 𝑥 . During sampling, we
project the forward-facing surfaces 𝑃0−2 onto spherical rectangles𝑄0−2.

The probability density of selecting the vertex 𝑦 can then be

computed in closed form
3
as:

𝑝 (𝑦 |𝑥) = 𝑝 (𝑦 |𝑦′, 𝑥)𝑝 (𝑦′ |𝑥, 𝑣𝑖 )𝑝vs (𝑣𝑖 |𝑥), (10)

due to two factors. First, due to the rejection step, each vertex 𝑦 can

only be sampled when we select the voxel 𝑣𝑖 within which it resides,

since voxels are disjoint. This eliminates the need tomarginalize over

𝑣𝑖 . Second, we sample the boundary of 𝑏𝑖 rather than the interior.

Consequently, given 𝑥 and a specific 𝑣𝑖 , the mapping 𝑦′ ↦→ 𝜔𝑖 is

injective, removing the need to marginalize over 𝑦′.
Our formulation trades off the costly PMF integration, as shown

in Eq. (9), with sample rejection. Therefore, having a compact bound-

ing volume is crucial to reduce sample rejection, as discussed in

Section 5.1 on geometry injection.

Spherical voxel sampling. To efficiently generate samples on the

surface of the bounding voxel, we project all forward-facing surfaces

of the AABB 𝑏𝑖 into spherical rectangles [Arvo 1995; Ureña et al.

2013]. We only attempt to select a sample if the vertex 𝑥 is outside

the AABB𝑏𝑖 , and so there are at least one and at most three spherical

rectangles, 𝑄0, 𝑄1, 𝑄2, as illustrated in Fig. 7.

To draw the primary sample 𝑦′, we first select one spherical rec-
tangle proportionally to its surface area, 𝑝 (𝑄𝑖 ) = Area(𝑄𝑖 )/∑𝑗 Area(𝑄 𝑗 ) ,
and then apply spherical rectangle sampling [Ureña et al. 2013] on

𝑄𝑖 . This allows us to sample the boundary of the AABB with a

probability density proportional to the solid angle:

𝑝 (𝑦′ |𝑥, 𝑣𝑖 ) =
1∑

𝑗 Area(𝑄 𝑗 )
. (11)

3
The 𝑝 (𝑦 |𝑦′, 𝑥 ) term in Eq. (10) is essentially a Jacobian of the mapping from 𝑦 to 𝑦′

.
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5.4 Multiple Importance Sampling with BSDF Sampling
To make our algorithm robust, we combine samples drawn using

VXPG with BSDF importance sampling using Multiple Importance

Sampling (MIS) with the balance heuristic [Veach and Guibas 1995].

This step is crucial since, like in many path guiding methods, light

injection is not guaranteed to find every voxel that contributes to the

image and can results in bias. Combining BSDF sampling ensures

all surfaces have a non-zero probability of being selected.

5.5 Path Guiding for Further Bounces
Our bounding voxel sampling method can also be applied to direct

illumination and multi-bounce indirect illumination. To guide direct

illumination, we inject light source emission instead of irradiance

of 𝑥2 in the light injection stage. For further bounces, we can extend

our method by injecting 𝑥3, 𝑥4, . . . and further vertices to guide the

corresponding bounces. A challenge for second bounce onwards is

that our voxel selection strategy estimates contribution between

superpixels and supervoxels, while path vertices may lie on parts of

the scene outside the image. To obtain information for these vertices,

we need to estimate voxel-voxel contribution. Alternatively, we can

skip the contribution estimation for second bounce onwards.

In our implementation, we include up to second-bounce indirect

illumination. To minimize overhead, we reuse the bounding voxel

structure built for the first bounce, as seen in Fig. 1(c), and use power-

based sampling for voxel selection. Our experiments show that this

simple strategy still helps with sampling the second bounce.

6 EVALUATION
We implemented our algorithm in a custom renderer using the

Vulkan API with hardware-accelerated ray tracing. All results are

rendered at a 1280×720 resolution, on a laptop with an NVIDIA

GeForce RTX 3070 GPU. The reference images are rendered using

standard unidirectional path tracing with a high sample count. All

reported timings are measured by averaging at least 300 frames.

Our test scenes are based off Bitterli’s [2016] rendering resources.

In most rendered images, we visualize indirect illumination only,

omitting direct illumination, to emphasize the improvement of our

algorithm for guiding indirect illumination.

We provide more comparisons in the supplementary material.

6.1 Static Scene Comparisons
Image quality comparisons. We assess image quality using FLIP

(↓) [Andersson et al. 2020], by comparing to the following methods:

BSDF importance sampling, real-time stochastic lightcuts (SLC) [Lin

and Yuksel 2020], stochastic substitute trees (SST) [Tatzgern et al.

2020], and screen space path guiding (SSPG) [Derevyannykh 2022].

All scenes are rendered with 2-bounce global illumination, with the

exception of Veach Mis, which only includes direct illumination.

Our method always uses one VXPG and one BSDF path, combined

using MIS, resulting in a constant 2 samples-per-pixel. We use 64
3

voxel resolutions for all our results.

SSPG maintains one Gaussian lobe per pixel and uses a ran-

dom mixture of the Gaussian lobe and BSDF lobe for first-bounce

path guiding. In our implementation, we adopt the balance heuris-

tic [Veach 1998] instead of their learned randommixture and directly

fit the Gaussian lobe to the one-bounce incident radiance. This set-

ting always provides superior quality across all tested configurations.

Meanwhile, since SSPG heavily relies on temporal reuse to learn

the lobe, all results are captured after the guiding distributions have

been fully learned.

Fig. 8 and Table 2 presents an equal-time comparison. In scenes

with complex visibility, our approach outperforms SLC and SST

since we incorporate visibility in our sampling process. However,

the VeachMis scene has low visibility complexity, and so VPL-based

methods can outperform our approach in some regions. On the other

hand, VPL-based methods are poor at handling highly specular

surfaces, while our approach addresses this through approximate

product sampling and combining with BSDF sampling.

Guiding distribution comparison. In Fig. 9, we provide a visual-

ization of the learned directional distributions, which approximate

the direct or one-bounce radiance. We compare our method (VXPG)

with two established techniques for real-time path guiding: the

Compressed Directional Quadtree (CDQ) [Dittebrandt et al. 2020]

and the one-lobe Gaussian mixture model (GMM) [Derevyannykh

2022].

When comparing with CDQ, we use the implementation with 64

bit counts, as recommended in Section 7.3 of the paper [Dittebrandt

et al. 2020]. For the sake of simplicity and fairness, in every frame,

we exclusively draw 256 samples from the shading point to update

the CDQ structure, rather than using all samples within a leaf of

an adaptive octree as described by the authors. This modification

improves the quality of the learned CDQ compared with the original

implementation, as it effectively eliminates parallax issues, so that

it is easier to compare with our approach and screen space path

guiding [Derevyannykh 2022] as both are inherently parallax-free.

The Veach Mis scene consists of three emitting spherical lights

of increasing size. The smallest light is a challenge for both CDQ and

a one-lobe GMM to capture and represent. In the Fireplace scene,

there are over eight distinct high-contribution regions, but both

CDQ and GMM are unable to represent complex distributions. It

shows that our method is able to represent challenging distributions.

It excels in identifying and representing small as well as multiple

high-contribution regions while preserving sharp boundaries.

Combination and comparison with ReSTIR. Directly comparing

our method with ReSTIR is challenging, since ReSTIR heavily relies

on reusing samples across frames to refine the sampling distribution.

However, as a path guiding technique, our approach can be used for

generating the candidate samples for ReSTIR.

In Fig. 10, we compare VXPGwith ReSTIR GI [Ouyang et al. 2021]

and a combination of both methods. We combine VXPG and BSDF

sampling using MIS to generate candidate samples for ReSTIR. No-

tably, in the Veach Ajar scene, where BSDF sampling may generate

poor candidate samples, our approach can outperform ReSTIR when

the number of temporal samples is insufficient. Furthermore, using

VXPG as a candidate distribution of ReSTIR GI improves the result.

Adaptation speed comparison. In Fig. 9, we illustrate that VXPG

can rapidly adapt to sudden illumination changes in a single frame,

whereas CDQ and GMM exhibit only minor adjustments.
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BSDF SLC SST SSPG Ours Reference

sample per pixel:

render time:

sample per pixel:

render time:

sample per pixel:

render time:

sample per pixel:

render time:

sample per pixel:

render time:

3

3.82 ms

1

4.52 ms

1

9.74 ms

3

5.42 ms

2

4.18 ms

-

5 min

3.5

10.22 ms

3

13.69 ms

3

11.32 ms

2.5

9.24 ms

2

12.81 ms

-

5 min

2.5

12.21 ms

3

12.84 ms

3

13.32 ms

2.5

11.73 ms

2

12.12 ms

-

5 min

2.5

14.02 ms

3

13.78 ms

3

11.28 ms

2.5

11.04 ms

2

13.72 ms

-

5 min

2.5

17.93 ms

3

18.02 ms

3

14.54 ms

2.5

17.42 ms

2

18.39 ms

-

5 min

0.829 0.685 0.738 0.652 0.451

0.913 0.799 0.714 0.728 0.582

0.955 0.930 0.81 0.694 0.560

0.969 0.933 0.748 0.740 0.548

0.908 0.855 0.913 0.777 0.425

0.974 0.969 0.976 0.967 0.803

0.950 0.882 0.849 0.717 0.530

0.942 0.954 0.847 0.840 0.715

0.505 0.737 0.695 0.433 0.509

0.800 0.591 0.590 0.759 0.560
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Fig. 8. Approximate equal time comparisons of our method (VXPG) with previous works. FLIP values are inset in each image. We compare with BSDF
sampling, real-time Stochastic Lightcuts (SLC) [Lin and Yuksel 2020], stochastic substitute trees (SST) [Tatzgern et al. 2020], and screen-space path guiding
(SSPG) [Derevyannykh 2022]. All images are captured under static lighting conditions, with a fixed scene and camera pose. For BSDF and SSPG, we sometimes
include an additional path that only evaluates the first-bounce indirect lighting to align with the time budget, shown as an extra 0.5 sample per pixel.
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Table 2. Approximate equal time comparison of our method with previous works across a broader set of test scenes. We report mean FLIP and average render
time. For all scenes, we evaluated 2-bounce indirect illumination, except for the Veach, Mis scene, where we assess direct illumination without next event
estimation. The best-performing entries are highlighted in bold letters. Note that we precompute the geometry injection step once at scene initialization for
VXPG, and so omit it from the per-frame render times.

[Lin and Yuksel 2020] [Tatzgern et al. 2020] [Derevyannykh 2022] Ours

BSDF SLC SST SSPG VXPG

Veach Ajar 0.912 10.22 ms 0.904 13.69 ms 0.801 11.32 ms 0.785 09.24 ms 0.573 12.81 ms

Fireplace 0.895 12.58 ms 0.840 12.84 ms 0.856 13.32 ms 0.800 11.73 ms 0.599 12.12 ms

Staircase 0.963 14.02 ms 0.910 13.78 ms 0.869 11.28 ms 0.850 11.04 ms 0.768 13.72 ms

Teapot 0.704 11.08 ms 0.665 11.74 ms 0.781 12.09 ms 0.588 10.98 ms 0.489 10.85 ms

Kitchen 0.867 14.63 ms 0.736 12.18 ms 0.841 10.04 ms 0.796 12.68 ms 0.618 13.02 ms

Bedroom 0.919 18.38 ms 0.645 14.18 ms 0.823 17.12 ms 0.806 17.95 ms 0.450 15.48 ms

Breakfast 0.831 17.93 ms 0.701 18.02 ms 0.678 14.54 ms 0.683 17.42 ms 0.496 18.39 ms

Veach Mis 0.847 03.82 ms 0.594 04.52 ms 0.573 09.74 ms 0.766 05.42 ms 0.589 04.18 ms

We also directly compare adaptation speed for temporal informa-

tion, as shown in Fig. 11, where we compare our method to SSPG and

ReSTIR GI. Both SSPG and ReSTIR GI improve sampling through

the temporal accumulation of information.

The effectiveness of SSPG is limited since the guiding distribution

is restricted to a single lobe Gaussian. It also converges the slowest,

as BSDF sampling alone does not generate enough high contribution

samples to effectively train the model. In contrast, our approach is

able to learn a better guiding distribution at each frame, but does

not further refine using previous frames. On the other hand, ReSTIR

GI takes more than 20 frames to achieve stable quality. When using

VXPG as the candidate distribution, ReSTIR GI converges faster.

Denoising. Fig. 12 shows that our approach also improves ren-

dering results with A-SVGF denoising [Schied et al. 2018]. It can

further mitigate temporal artifacts in A-SVGF due to disocclusion

or rapid lighting changes (see supplementary video).

6.2 Dynamic Scene Comparisons
Dynamic objects and lighting. We evaluate our method on three

dynamic scenes. Fig. 13 illustrates how our approach can adapt to

dynamic environments and improve the quality of ReSTIR GI and

A-SVGF. Additional results are presented in the supplemental video.

6.3 Performance
Pipeline time breakdown. Table 3 displays the average execution

times of each stage of the pipeline. In particular, in light tree building

stage we build a binary tree for power-based voxel selection, and

in path tracing stage we execute all sampling and path tracing.

Besides the geometry injection stage, the preparation stages of

VXPG typically introduce an overhead of less than 1ms in the test

scenes. This overhead is outweighed by the improved sampling

efficiency as shown in the equal-time comparison.

The cost of geometry injection is heavily dependent on scene

complexity. In practice, we precompute geometry information for

static objects. During runtime, we perform geometry injection solely

for dynamic objects and then merge the results.

Dynamic geometry injection. As geometry injection requires per-

frame voxelization of dynamic objects, the overhead can be con-

cerning. Fortunately, we observe that sub-voxel details are usually

filtered during injection, therefore creating level of details (LoDs)

for high-poly models often do not lead to any quality loss under low

voxel resolution, while significantly reducing the injection overhead.

Table 4 shows how various combinations of LoDs and voxel resolu-

tions influence the overhead, where LoDs are generated by quadric

mesh simplification [Garland and Heckbert 1997]. Higher-resolution

grids may actually accelerate geometry injection by reducing the

number of conflicts for atomic operations. However, the increase in

resolution implies a larger number of voxels to be processed, conse-

quently increasing the overhead of the entire pipeline. Furthermore,

we implemented a spatial hashing [Binder et al. 2021] version for

geometry injection, which usually involves an overhead less than

0.15ms caused by resolving linear probing, but can be helpful when

memory is the bottleneck.

6.4 Ablation Studies
Various voxel resolutions for large scenes. Fig. 14 illustrates the

significance of voxel resolution in the quality of VXPG. In mod-

erately large scenes like Zero-Day, a grid size of 64
3
voxels may

struggle to accurately capture the characteristics of irradiance and

geometry. Consequently, noticeable quality improvement can be

observed with increased voxel resolution.

Multi-bounce path guiding. Fig. 15 presents an equal-sample com-

parison of second-bounce-only indirect illumination between BSDF

and VXPG sampling. When the scene is dominated by indirect illu-

mination and visibility is less crucial, VXPG can also improve multi-

bounce sampling quality simply by using power-based [Shirley et al.

1996] voxel selection. In contrast, screen-space techniques [Derevyan-

nykh 2022; Ouyang et al. 2021] cannot guide for further bounces.

Voxel selection strategies. Fig. 16 shows how various voxel selec-

tion strategies affect image quality. We compare our visibility-aware

algorithm with power-based sampling [Shirley et al. 1996] and sto-

chastic lightcuts [Lin and Yuksel 2020]. Our algorithm consistently

outperforms others, particularly when visibility is a crucial factor
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Fig. 9. We analyze the directional distribution that fits the one-bounce radiance, represented in cylindrical coordinates [Lambert 1770]. Our comparative study
involves our method (VXPG) and the reference radiance (GT), as well as Compressed Directional Quadtree (CDQ) [Dittebrandt et al. 2020] and a one-lobe
Gaussian mixture model (GMM) [Derevyannykh 2022] (which is learned under a hemispherical mapping [Shirley and Chiu 1997]). The scene and lighting
remain static until frame N, where N is sufficiently large to ensure stable convergence across all methods. However, on frame N+1, a sudden movement of the
light source results in a change in radiance, and it is evident that CDQ and SSPG exhibit slow adaptation.

Table 3. Breakdown of the VXPG pipeline execution time for 2-bounce global illumination. (*: run only once for static scenes geometries.)

Visibility

Buffer

Light

Injection

Geometry

Injection*

Superpixel

Clustering

Supervoxel

Clustering

Light Tree

Building

Evaluating

Average Visibility

Path

Tracing

Fireplace 0.39 ms 0.09 ms 0.57 ms 0.13 ms 0.16 ms 0.13 ms 0.21 ms 10.77 ms

Veach Ajar 0.40 ms 0.09 ms 2.15 ms 0.13 ms 0.16 ms 0.12 ms 0.17 ms 7.01 ms

Staircase 0.76 ms 0.09 ms 2.78 ms 0.13 ms 0.17 ms 0.13 ms 0.29 ms 12.03 ms

Breakfast 0.68 ms 0.09 ms 2.38 ms 0.14 ms 0.18 ms 0.14 ms 0.40 ms 15.15 ms

Kitchen 0.52 ms 0.09 ms 11.52 ms 0.13 ms 0.16 ms 0.14 ms 0.24 ms 9.37 ms

Bedroom 0.68 ms 0.11 ms 5.02 ms 0.13 ms 0.17 ms 0.14 ms 0.31 ms 13.33 ms
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FLIP

Reference ReSTIR

(5 frames)

0.904

ReSTIR + VXPG

(5 frames)

0.321

VXPG

0.546

ReSTIR

(500+ frames)

0.369

ReSTIR + VXPG

(500+ frames)

0.233

Fig. 10. Image quality comparisons for our approach (VXPG), ReSTIR GI
[Ouyang et al. 2021] (ReSTIR), and their combination (ReSTIR + VXPG).
We also show the effect of the ReSTIR variants after both small and large
amounts of temporal reuse. The top row represents images captured after
5 frames of temporal reuse, while the bottom row corresponds to images
captured after more than 500 frames with M-cap = 20.

FL
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e
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I

Frame Index

SSPG

VXPG

ReSTIR

ReSTIR + VXPG

Fig. 11. To assess adaptation speed, we studied first-bounce indirect illumi-
nation in the Veach, Ajar scene over 10 frames. SSPG utilizes 10 neighbor
samples to accelerate convergence, as detailed in [Derevyannykh 2022].
ReSTIR reuses 1 spatial sample and the temporal sample at every frame,
with M-cap = 20.

(a) BSDF + A-SVGF (b) VXPG + A-SVGF (c) Reference

0.256 0.064 FLIP

0.293 0.151 FLIP

Fig. 12. (a) Noisy inputs can cause shadow and highlight detail loss and
color distortion, even with A-SVGF denoising [Schied et al. 2018]. (b) Our
approach improves the denoised image quality.

BSDF VXPG ReSTIR

BSDF

ReSTIR

VXPG

A-SVGF

BSDF

A-SVGF

VXPG

Reference

0.908 0.710 0.903 0.886 0.783 0.217 FLIP

0.969 0.839 0.722 0.723 0.448 0.411 FLIP

0.966 0.769 0.894 0.861 0.566 0.385 FLIP

Fig. 13. Our approach can effectively adapt in dynamic scenes, enhancing
the quality of ReSTIR GI and A-SVGF. BrainStem @Keith Hunter, Zero Day
©beeple [Winkelmann 2019], Disco @Md Mahmudur Rahman Bappy

Table 4. The mean FLIP and average time of geometry injection for the
Staircase BrainStem scene are assessed across various combinations of
voxel resolution andmesh level of detail.We also show the time for the rest of
the pipeline to show the impact of increasing voxel resolution. Additionally,
we show the mesh at different LoDs and the number of the triangles.

Resolution 64
3

Resolution 128
3

Resolution 256
3

LoD-0 0.872 1.042 ms 0.849 0.628 ms 0.811 0.454 ms

LoD-1 0.872 0.313 ms 0.854 0.256 ms 0.804 0.190 ms

LoD-2 0.875 0.112 ms 0.838 0.087 ms 0.803 0.107 ms

LoD-3 0.870 0.078 ms 0.843 0.065 ms 0.822 0.082 ms

Rest of the

pipeline
15.88 ms 16.87 ms 20.23 ms

LoD level

# of triangles 123,332 36,998 12,328 6,164

(a) Reference (b) BSDF (c) VXPG 64
3
/ 128

3
/ 256

3

0.967 0.941 0.877 0.823

0.963 0.922 0.830 0.763

Fig. 14. Direct illumination and 1st bounce indirect lighting without NEE
by VXPG with various voxel resolutions. Error shown in FLIP.

ACM Trans. Graph., Vol. 43, No. 4, Article 125. Publication date: July 2024.



125:12 • Haolin Lu, Wesley Chang, Trevor Hedstrom, and Tzu-Mao Li

BSDF

0.94

VXPG

0.76

Reference

FLIP

BSDF

0.90

VXPG

0.84

Reference

FLIP

F
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Fig. 15. An equal sample comparison of the second-bounce-only indirect
illumination. VXPG uses power-based sampling [Shirley et al. 1996] for
voxel selection, as the visibility information is in screen-space and thus not
available during the second bounce.

BSDF Power SLC Ours Reference

0.870 0.678 0.645 0.525 FLIP

0.928 0.920 0.907 0.677 FLIP

Fig. 16. The first bounce indirect illumination sampled by BSDF sampling
and VXPG with various voxel selection strategies.

Reference Voxel + Intersect + Clipping

0.729 0.681 0.421

Fig. 17. Direct illumination without NEE and guided by VXPG, with various
geometry compaction strategies. Error shown in FLIP.

(e.g. the Veach Ajar scene). Note that VXPG with naïve voxel

selection strategies is still able to outperform BSDF sampling.

Geometry compaction strategies. Geometry compaction has a sub-

stantial impact on the rejection rate during sampling. Fig. 17 shows

the different compaction strategies discussed in Fig. 4. Using a more

compact AABB can yield significantly better results.

Actual Viewport

Teapot scene

Unbiased

Unbiased

Biased

Biased

FLIP Error Teapot

FLIP Error Breakfast

Fig. 18. The bias of naïve balance heuristic MIS estimator in Breakfast and
Teapot scenes, as measured by FLIP.

7 DISCUSSION, LIMITATIONS AND FUTURE WORK
Unbiasedness. As mentioned in Section 5.4, BSDF samples serve

dual purposes: light injection and MIS. While reusing a single BSDF

path for both purposes is attractive, it should be approached with

caution. In particular, if, for each frame, we spawn a BSDF path

and successively use it for light injection and MIS, the outcome will

be biased. Other adaptive sampling methods [Kirk and Arvo 1991]

share the concern as well.

There are two ways to address the problem: 1) Using 𝑥2 of BSDF

paths from the previous frame for light injection, resulting in a one-

frame lag for path guiding. All previous path guiding approaches

use this strategy, given their primary focus on static scenes. 2)

Spawn two BSDF rays for light injection and MIS, respectively. This

introduces extra overhead but can be beneficial in highly dynamic

scenarios.

In practice, we can also simply ignore the bias. Experiments sug-

gest that the bias is closely related to the light injection process. As

illustrated in Fig. 18, when light injection successfully captures most

of the voxels that contribute to the image, such as in the Breakfast

scene, no bias is observed. Conversely, the Teapot scene presents

an extreme case. The specific viewport configuration complicates

the identification of all contributing voxels in the upper section,

with only a few pixels in the upper-left corner of the image being

affected. In scenarios like this, the missed voxels will bring bias to

corresponding pixels. However, our light injection strategy tends to

identify voxels that contribute to a greater number of pixels, which

results in any bias being relatively small and localized.

Temporal Stability. In most cases, our approach is temporally sta-

ble. That being said, different voxel clustering can lead to different

amounts of variance across frames, especially in scenes with com-

plex visibility. An option is to improve the clustering by refining

the local clusters for each superpixel [Ou and Pellacini 2011].

Caustics Transport. In our approach, we only estimate irradiance

values for bounding voxels, and assume each voxel is a diffuse

emitter during sampling. While our approximate product sampling

during voxel selection can handle simple specular paths, this as-

sumption limits our ability to guide caustics. To be more specific,
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as we neglect the potential specular effect at 𝑥2 vertices, guiding

general indirect light reflected from a glossy surface towards a pri-

mary vertex would be challenging. At the same time, VXPG can

potentially be used to guide photon tracing [Jensen 1995].

Scalability to large-scale scenes. While we have showcased promis-

ing results on moderately large scenes like Zero-Day, which in-

cludes 5.2 million triangles. There are two main concerns regarding

further scalability: 1) In terms of performance, we have noted that

the cost of geometry injection generally scales linearly with the

number of triangles, see Table 4. To mitigate this, we have adopted

LoD as a solution. 2) Regarding quality, large scenes may lead to less

precise bounds of geometries, as illustrated in Fig. 14. To remedy

this, a higher resolution voxel is essential. We have implemented

spatial hashing for sparse storage, but a hierarchical structure such

as a clipmap [Tanner et al. 1998] or sparse voxel octrees [Laine and

Karras 2011] might be useful for very large-scale scenes.

8 CONCLUSION
We presented a path guiding algorithm that can learn and adapt com-

plex distributions in real time. At the heart of our method, bounding

voxel sampling demonstrates the feasibility of using a pure spatial

distribution for path guiding, which is visibility-aware and can eas-

ily adapt to dynamic scenes. It removes the need for integration

that arises when using spatial distributions from previous work, by

sampling on voxel boundaries and employing rejection sampling.
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